Control Theory

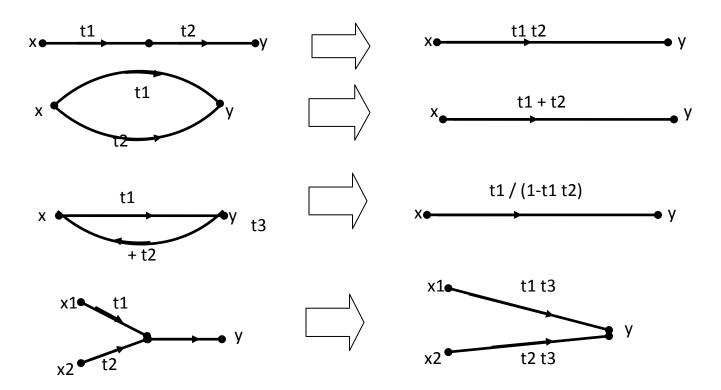
LECTURE THREE SIGNAL FLOW GRAPH

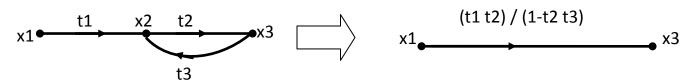
3.1 Introduction

The block diagram reduction technique is tedious and time consuming. Signal flow method gives an alternative approach for finding out transfer function of a control system. Signal flow graph is a network diagram consisting of <u>nodes</u>, <u>branches and arrows</u>. Nodes represent variables or signals in a system. The nodes are connected by branches and arrows marked on branches indicate direction of flow signal.

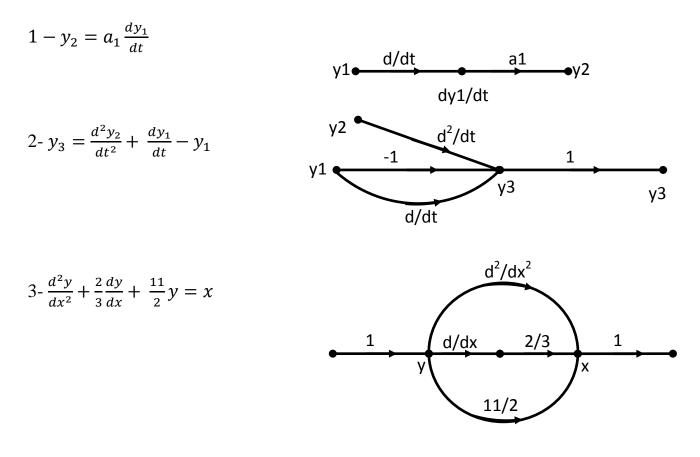
If y=t x, then the signal flow graph is; $x \xrightarrow{t} y$

The following rules apply as well for the signal flow graph;





Examples 3.1: Draw signal flow graph for the following equations:

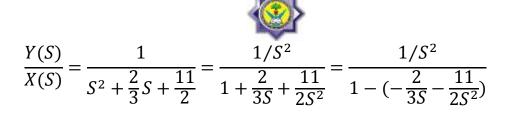


Another solution may be introduced by taking the Laplace transform of the equation as follows;

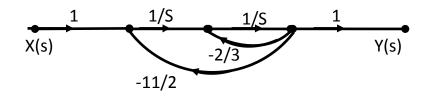
$$S^{2}Y(S) + \frac{2}{3}Y(S) + \frac{11}{2}Y(S) = X(S)$$

3rd Year-Computer Communication Engineering-RUC

Control Theory



Therefore; the signal flow graph is shown;



3.2 Mason's Gain Formula

Mason gave a formula relating the output and input. The formula is:

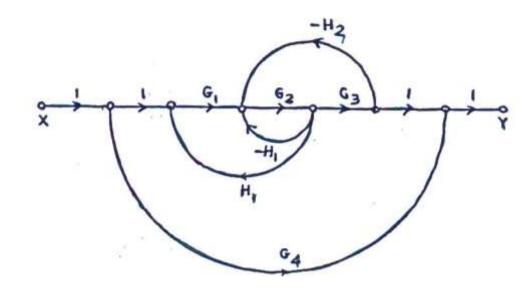
$$T = Transfer Function = \frac{\sum P_K \Delta_K}{\Delta}$$

 $\Delta = 1 - (\text{sum of all individual loops}) + (\text{Gain product of all possible combinations of two non-touching loops}).$

 Δ_{K} = same as for Δ but formed by loops not touching the kth forward path.

 $P_K = gain of k^{th} forward paths.$

Example 3.2: For the system shown, obtain the closed loop transfer function.



Solution:

Forward paths:

P1=G1 G2 G3 and P2=G4

Loops:

L1=-G2H1 ,	L2=G1G2H1,	and	L3= -G2G3H2
------------	------------	-----	-------------

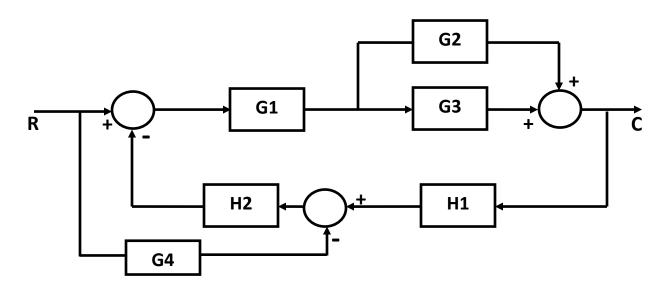
Now; $\Delta = 1 - (L1 + L2 + L3) = 1 + G2H1 - G1G2H1 + G2G3H2$

 $\Delta 1 = 1$ and $\Delta 2 = \Delta$ therefore;

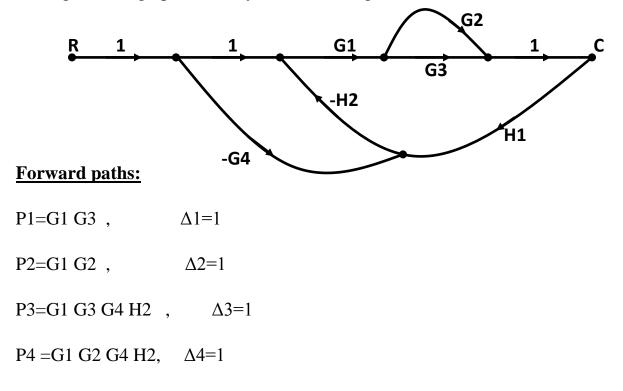
 $\frac{Y}{X} = \frac{P1\,\Delta 1 + P2\,\Delta 2}{\Delta} = \frac{G1\,G2\,G3 + G4(1 + G2\,H1 - G1\,G2\,H1 + G2\,G3\,H2)}{1 + G2\,H1 - G1\,G2\,H1 + G2\,G3\,H2}$

Example 3.3:

Find C/R for the system shown below using signal flow graph technique.



The signal flow graph for the system block diagram above is shown as;



Loops:

L1= - G1 G3 H1 H2 and L2= -G1 G2 H1 H2

Now;

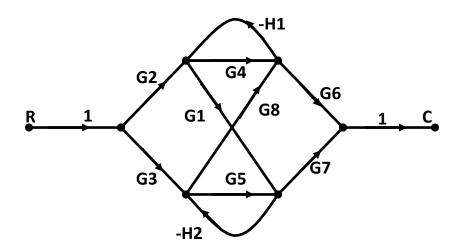
 Δ =1- (L1+L2) = 1 + G1 G3 H1 H2 + G1 G2 H1 H2

Therefore;

$$T = \frac{C}{R} = \frac{P1\,\Delta 1 + P2\,\Delta 2 + P3\,\Delta 3 + P4\,\Delta 4}{\Delta}$$

 $T = \frac{G1 G3 + G1 G2 + G1 G3 G4 H2 + G1 G2 G4 H2}{1 + G1 G3 H1 H2 + G1 G2 H1 H2}$

Example 3.4: Find C/R for the system shown:



Solution:

Forward paths:

P1=G2 G4 G6 , P2=G3 G5 G7 , P3=G2 G1 G7 , P4=G3 G8 G6

P5=-G2 G1 H2 G8 G6 , P6=-G3 G8 H1 G1 G7

Loops:

L1=-G4 H1 , L2=-G5 H2 , and L3= G1 H2 G8 H1

Non-touching Loops:

There are one pair of non-touching loops = (G4 H1) (G5 H2)

Now; $\Delta = 1 - (-G4 H1 - G5 H2 + G1 H2 G8 H1) + G4 H1 G5 H2$

 $\Delta = 1 + \text{G4 H1} + \text{G5 H2} - \text{G1 H2 G8 H1} + \text{G4 H1 G5 H2}$

Also;

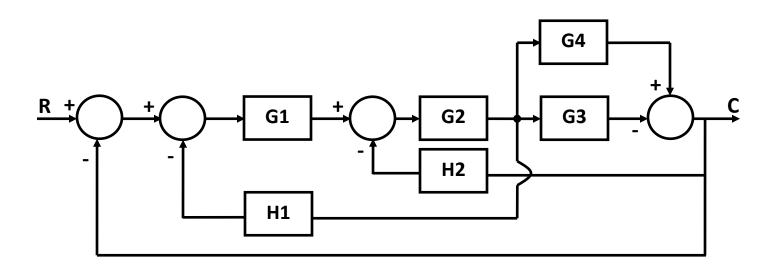
 $\Delta 1=1-(-G5 H2)=1+G5 H2$, $\Delta 2=1-(-G4 H1)=1+G4 H1$ and $\Delta 3=\Delta 4=\Delta 5=\Delta 6=1$

Therefore;

$$T = \frac{C}{R} = \frac{P1 \Delta 1 + P2 \Delta 2 + P3 \Delta 3 + P4 \Delta 4 + P5 \Delta 5 + P6 \Delta 6}{\Delta}$$

$$T = \frac{G2 G4 G6(1 + G5 H2) + G3 G5 G7(1 + G4 H1) + G2 G1 G7 + G3 G8 G6 - G2 G6 G1 H2 - G3 G7}{1 + G4 H1 + G5 H2 - G1 H2 G8 H1 + G4 H1 G5 H2}$$

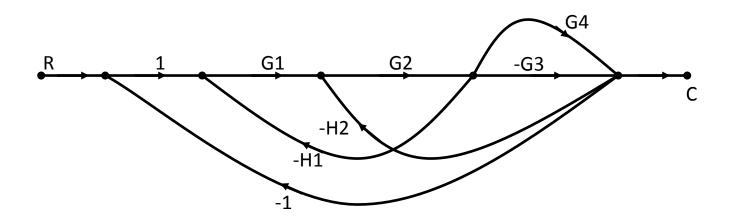
Example 3.5: Using Mason's formula method find the transfer function C/R of the below block diagram system.



3rd Year-Computer Communication Engineering-RUC

Control Theory

Converting the block diagram into signal flow graph as shown;



Forward paths:

P1=- G1 G2 G3 and P2= G1 G2 G4

Loops:

L1= G2 G3 H2 , L2= -G2 G4 H2 , L3= -G1 G2 H1 , L4= G1 G2 G3 and L5= -G1 G2 G4

Now;

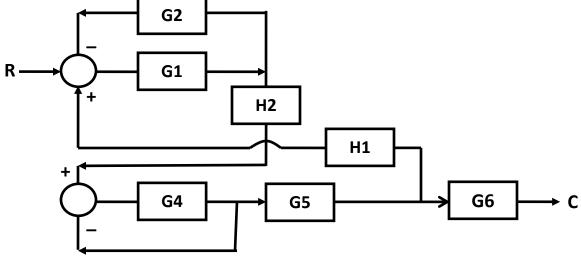
 $\Delta 1 = 1$ and $\Delta 2 = 1$ and $\Delta = 1 - (L1+L2+L3+L4+L5)$

 Δ =1 - G2 G3 H2 + G2 G4 H2 + G1 G2 H1 -G1 G2 G3+G1 G2 G4

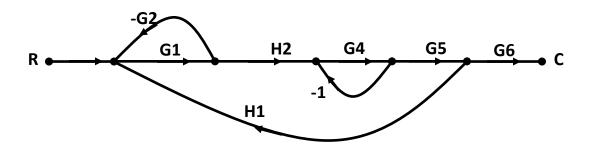
$T = \frac{G1\ G2\ G4 - G1\ G2\ G3}{1\ -\ G2\ G3\ H2\ +\ G2\ G4\ H2\ +\ G1\ G2\ H1\ -\ G1\ G2\ G3\ +\ G1\ G2\ G4}$

Example 3.6:

Using Mason's formula method find the transfer function C/R of the below block diagram system.



Converting the block diagram into signal flow graph as shown;



Forward paths:

P1= G1 H2 G4 G5 G6 with Δ 1=1

Loops:

L1=-G1~G2, L2=-G4, and L3=G1~H2~G4~G5~H1

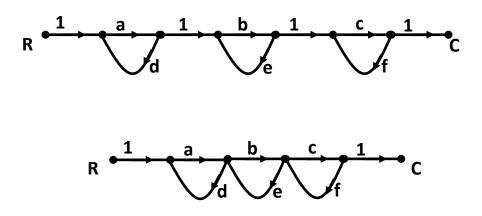
therefore; Δ =1+G1 G2 +G4-G1 H2 G4 G5 H1+ G1 G2 G4

then;

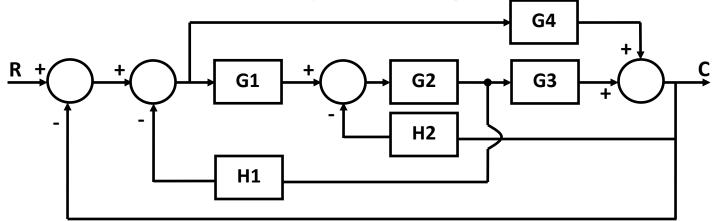
$$\frac{C}{R} = \frac{G1 H2 G4 G5 G6}{1 + G1 G2 + G4 - G1 H2 G4 G5 H1 + G1 G2 G4}$$

Exercises:

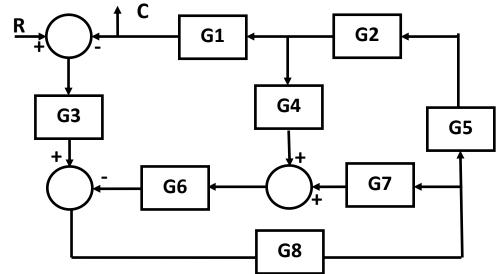
Q1- Prove that the two shown control systems have different transfer functions.



Q2- Find the transfer function for the system shown using Mason's formula.



Q3- Find the transfer function for the system shown using Mason's formula.



Q4- Find the transfer function for the system shown using Mason's formula.

