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LECTURE FOUR 

Time Domain Analysis 

Transient and Steady-State Response 

Analysis 

 

4.1 Transient Response and Steady-State Response 

 

The time response of a control system consists of two parts: the transient response and the 

steady-state response. By transient response, we mean that which goes from the initial state 

to the final state. By steady-state response, we mean the manner in which the system output 

behaves as it approaches  infinity. Thus the system response c(t) may be written as 

                                                                                                  (4.1) 

4.2 First-Order Systems 

 

Consider the first-order system shown in Figure 4.1-a below. Physically, this system may 

represent an RC circuit, thermal system, or the like. A simplified block diagram is shown in 

Figure 4.1-b. The input-output relationship is given by 
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In the following, we shall analyze the system responses to such inputs as the unit-step, unit-

ramp, and unit-impulse functions. The initial conditions are assumed to be zero. 

 

4.2.1 Unit-Step Response of First-Order Systems 

Since the Laplace transform of the unit-step function is 1/s, substituting R(s) =1/s into 

Equation (4.1), we obtain 

 

Expanding C(s) into partial fractions gives 

 

Taking the inverse Laplace transform, we obtain 

             (4.2) 

Equation (4.2) states that initially the output c(t) is zero and finally it becomes unity. One 

important characteristic of such an exponential response curve c(t) is that at t=T the value of 

c(t) is 0.632, or the response c(t) has reached 63.2% of its total change. This may be easily 

seen by substituting t=T in c(t). That is, 

 

Note that the smaller the time constant T, the faster the system response. Another important 

characteristic of the exponential response curve is that the slope of the tangent line at t=0 is 

1/T, since 
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The output would reach the final value at t=T if it maintained its initial speed of response. 

From Equation above we see that the slope of the response curve c(t) decreases 

monotonically from 1/T at t=0 to zero at t=∞. 

 

 

The exponential response curve c(t) given by Equation (4.2) is shown in Figure 4.2. In one 

time constant, the exponential response curve has gone from 0 to 63.2%of the final value. In 

two time constants, the response reaches 86.5%of the final value. At t=3T, 4T, and 5T, the 

response reaches 95%, 98.2%, and 99.3%, respectively, of the final value. Thus, for t ≥ 4T, 

the response remains within 2% of the final value. As seen from Equation (4.2), the steady 

state is reached mathematically only after an infinite time. In practice, however, a reasonable 

estimate of the response time is the length of time the response curve needs to reach and stay 

within the 2%line of the final value, or four time constants. 
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4.2.2 Unit-Ramp Response of First-Order Systems 

Since the Laplace transform of the unit-ramp function is 1/s2, we obtain the output of the 

system of Figure 1(a) as 

 

Expanding C(s) into partial fractions gives 

 

Taking the inverse Laplace transform of above equation, we obtain 

 

The error signal e(t) is then 

 

As   t   approaches infinity,  e
–t/T

  approaches zero, and thus the error signal e(t) approaches 

T or 

 

 

The unit-ramp input and the system output are shown in Figure 4.3. The error in following 

the unit-ramp input is equal to T for sufficiently large   t. The smaller the time constant T, the 

smaller the steady-state error in following the ramp input. 
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4.2.3 Unit-Impulse Response of First-Order Systems 

 

For the unit-impulse input, R(s)=1 and the output of the system of Figure 4.1(a) can be 

obtained as 

 

 

The inverse Laplace transform of above Equation 

                                                                                      (4.3) 

The response curve given by Equation (3) is shown in Figure 4.4. 
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4.3 Second-Order Systems 

 

Any second order system can be represented by the following typical form and system 

diagram: 

                                                                                        (4.4) 

 

This is called the standard form of the second order system, where; 

n= undamped natural frequency (rad/sec). 

 (zeta) = damping ratio  
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Example 4.1: 

For the system shown below, find n and . 

    

    
 

   

   
 
 

 
 
 

 

Comparing with the standard form of  the 2nd  order system, obtaining; 

  
  

 

 
           √

 

 
  (rad/sec) 

also ; 

     
 

 
        

 

  
   √

 

 
   

 

 √  
 

Example 4.2:  

For the system shown below, find n and . 

    

    
 

 

           
 

First of all, the transfer function should be rearranged as; 

    

    
 

 

          
 

and by comparing with the standard form, get; 

  
                 (rad/sec) 
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also ; 

                
   

 
          

We shall now solve for the response of the system shown in equation (4.4) to a unit-step 

input. We shall consider three different cases: the underdamped (0< <1), critically 

damped (=1), and overdamped (>1) cases. 

 

Unit Step input: 

(1) Underdamped case  (0<<1): In this case, C(s)/R(s) can be written as 

 

 

 

Where        √  
 
    . The frequency    is called the damped natural frequency. 

For a unit-step input, C(s) can be written 

                                                                              (4.5) 

The inverse Laplace transform of Equation (4.5) can be obtained easily if C(s) is written in 

the following form: 
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Referring to the Laplace transform, it can be shown that 

 

 

Hence the inverse Laplace transform of Equation (4.5) is obtained as 

 

                               (4.6) 

 

 

From Equation (4.6), it can be seen that the frequency of transient oscillation is the damped 

natural frequency d and thus varies with the damping ratio  . The error signal for this 

system is the difference between the input and output and is 
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This error signal exhibits a damped sinusoidal oscillation. At steady state, or at t= ∞, no error 

exists between the input and output. 

 

(2) Undamped case  (=0):  

If the damping ratio  is equal to zero, the response becomes undamped and oscillations 

continue indefinitely. The response c(t) for the zero damping case may be obtained by 

substituting =0 in Equation (6), yielding 

                                                                          (4.7) 

Therefore, the time of oscillation (T) is   
  

  
 

 

Thus, from Equation (4.7), we see that n represents the undamped natural frequency of 

the system. That is, n is that frequency at which the system output would oscillate if the 

damping were decreased to zero. If the linear system has any amount of damping, the 

undamped natural frequency cannot be observed experimentally. The frequency that may be 

observed is the damped natural frequency d, which is equal to  . This frequency 
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is always lower than the undamped natural frequency. An increase in  would reduce the 

damped natural frequency d. If  is increased beyond unity, the response becomes 

overdamped and will not oscillate. 

 

(3) Critically damped case  (=1):  

If the two poles of C(s)/R(s) are equal, the system is said to be a critically damped one. For a 

unit-step input, R(s)=1/s and C(s) can be written 

 

                                                                                                      (4.8) 

The inverse Laplace transform of Equation (8) may be found as 

                                                                            (4.9) 

 

This result can also be obtained by letting  approach unity in Equation (4.6) and by using 

the following limit: 

 

 

 

(4) Overdamped case  (>1):   

In this case, the two poles of C(s)/R(s) are negative real and unequal. For a unit-step input, 

R(s)=1/s and C(s) can be written 
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                                       (4.10) 

 

The inverse Laplace transform of Equation (10) is 

                         (4.11) 

 

Where  

Thus, the response c(t) includes two decaying exponential terms. When  is appreciably 

greater than unity, one of the two decaying exponentials decreases much faster than the 

other, so the faster-decaying exponential term (which corresponds to a smaller time constant) 

may be neglected. That is, if –s2 is located very much closer to the j axis than –s1 (which 

means s2 >> s1 ), then for an approximate solution we may neglect –s1.This is permissible 

because the effect of –s1 on the response is much smaller than that of –s2, since the term 

involving s1 in Equation (4.11) decays much faster than the term involving s2 . Once the 

faster-decaying exponential term has disappeared, the response is similar to that of a first-

order system, and C(s)/R(s) may be approximated by; 
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This approximate form is a direct consequence of the fact that the initial values and final 

values of the original C(s)/R(s) and the approximate one agree with each other. With the 

approximate transfer function C(s)/R(s), the unit-step response can be obtained as 

 

 

The time response c(t) is then 

 

 

 

This gives an approximate unit-step response when one of the poles of C(s)/R(s) can be 

neglected. 

 

A family of unit-step response curves c(t) with various values of  is shown in Figure (4.5), 

where the x-axis is the dimensionless variable nt. The curves are functions only of . These 

curves are obtained from Equations (4.6), (4.9), and (4.11). The system described by these 

equations was initially at rest. Note that two second-order systems having the same  but 

different n will exhibit the same overshoot and the same oscillatory pattern. Such systems 

are said to have the same relative stability. From Figure (4.5), we see that an underdamped 
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system with  between 0.5 and 0.8 gets close to the final value more rapidly than a 

critically damped or over damped system. Among the systems responding without 

oscillation, a critically damped system exhibits the fastest response. An over damped system 

is always sluggish in responding to any inputs. It is important to note that, for second-order 

systems whose closed-loop transfer functions are different from that given by Equation (4.4), 

the step-response curves may look quite different from those shown in Figure 4.5. 

 

 

4.4 Definitions of Transient-Response Specifications 

 

The transient response of a practical control system often exhibits damped oscillations before 

reaching steady state. In specifying the transient-response characteristics of a control system 

to a unit-step input, it is common to specify the following: 
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1. Delay time,    td 

2. Rise time,      tr 

3. Peak time, tp 

4. Maximum over shoot, Mp 

5. Settling time, ts  

 

These specifications are defined in what follows and are shown graphically in previous 

Figures. 

1. Delay time, td: The delay time is the time required for the response to reach half the final 

value the very first time. 

2. Rise time, tr : The rise time is the time required for the response to rise from 10% to 90%, 

5% to 95%, or 0% to 100% of its final value. For underdamped second order systems, the 

0%to 100%rise time is normally used. For over damped systems, the 10% to 90% rise time is 

commonly used. 

3. Peak time, tp: The peak time is the time required for the response to reach the first peak of 

the overshoot. 

4. Maximum (percentage) overshoot, Mp: The maximum overshoot is the maximum peak 

value of the response curve measured from unity. If the final steady-state value of the 

response differs from unity, then it is common to use the maximum percentage overshoot. It 

is defined by: 

 

 

The amount of the maximum (percentage) overshoot directly indicates the relative stability 

of the system. 
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5. Settling time, ts : The settling time is the time required for the response curve to reach and 

stay within a range about the final value of size specified by absolute percentage of the final 

value (usually 2% or 5%). The settling time is related to the largest time constant of the 

control system. Which percentage error criterion to use may be determined from the 

objectives of the system design in question. 

 

 

The time-domain specifications just given are quite important, since most control systems are 

time-domain systems; that is, they must exhibit acceptable time responses (This means that, 

the control system must be modified until the transient response is satisfactory). 

 

 

 

It is desirable that the transient response be sufficiently fast and be sufficiently damped. 

Thus, for a desirable transient response of a second-order system, the damping ratio must be 
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between 0.4 and 0.8. Small values of   (that is, <0.4) yield excessive overshoot in the 

transient response, and a system with a large value of  (that is,  >0.8) responds sluggishly. 

 

4.5 Second-Order Systems and Transient-Response Specifications: 

 

In the following, we shall obtain the rise time, peak time, maximum overshoot, and 

settling time of the second-order system. These values will be obtained in terms of  and n. 

The system is assumed to be underdamped. 

 

1- Rise time tr :  

 

                                                           (4,12) 

Where          
  

 
   ,  

 

2- Peak time tp: We may obtain the peak time by differentiating c(t) with respect to time 

and letting this derivative equal zero. This will result in; 

 

                                                                                                                   (4.13) 

 

The peak time tp corresponds to one-half cycle of the frequency of damped oscillation.  
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3- Maximum overshoot Mp: The maximum overshoot occurs at the peak time or at 

t=tp=π/d. Mp generally is obtained by; 

                                                                                                       (4.14)      

   
 

    
 [ (  )   ]  

 

    
  

     √  
 

  

and by assuming   c(∞)=1   

In general ;                                                                

     
     √  

 

 

Taking the natural logarithm (ln) for both sides; 

          
 

√  
 
                    

            

                      
         

        

           
 

   √
        

           
 

4- Settling time ts : The settling time corresponding to a ; 2% or ;5% tolerance band may be 

measured in terms of the time constant T=1/ n  for different values of . The results are 

shown in Figure (4.7). For 0<  <0.9, if the 2% criterion is used, ts is approximately four 

times the time constant of the system. If the 5% criterion is used, then ts is approximately 

three times the time constant. Note that the settling time reaches a minimum value around 

=0.76 (for the 2% criterion) or =0.68 (for the 5% criterion) and then increases almost 

linearly for large values of . For convenience in comparing the responses of systems, we 

commonly define the settling time ts to be; 
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                                                                              (4.15) 

Or  

                                                                           (4.16) 

 

Example 4.3:  

Consider the system shown in figure below, where =0.6 and n=5 rad/sec. Find the rise time 

tr , peak time tp, maximum overshoot Mp, and settling time ts when the system is subjected 

to a unit-step input 

From the given values of  and  n, we obtain; 

 

Rise time tr : The rise time is 
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where β is given by 

 

The rise time tr is thus 

 

Peak time tp: The peak time is 

 

Maximum overshoot Mp: The maximum overshoot is 

 

The maximum percentage overshoot is thus 9.5%. 

 

For the 5% criterion, 

 

Example 4.4:  

Design a second order system by finding the system transfer function with response to a unit 

step input that ensures  maximum overshoot equal or less than 10% and settling time less 

than 0.5 seconds. Also compute rising time, peak time, and steady state error. 
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Solution: 

The second order standard form is; 

     
  

 

           
 
 

 

Therefore, it is required to find  and n. Now for Mp=10%=0.1, then 

   √
        

           
  √

        

           
         

And since the settling time should be less than 0.5 seconds, therefore assuming ts=0.5, then 

according to the 2% criterion; 

 

   
 

   
           

 

          
                 

 

Then; 

     
   

                
 

Now;  

     √  
         √                          
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                              

 

Also        (
  

 
)       (

     

    
)        

Therefore;  

 

   
   

  
 

       

     
                

and  

   
 

  
 

 

     
                

                                 

 

4.6 Stability Analysis 

 

Consider the control system block diagram below.  

 

The transfer function of the system is 
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However,    ( 1+G(s) H(s)  ) is called the characteristics equation of the system. Now a 

control system is considered stable if all the roots of the characteristics equation (C.E.) are in 

the Left Hand Side (LHS) of the S-plane. 

 

 

 

  

Stable Region: 

S= - σ ± j 

Un-Stable Region: 

S=  σ ± j 

 

G(s)H(s0 is also called the open loop transfer function. 

-In the following figure, some stability cases may be shown. 
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Example 4.5:  

For the system shown below, state whether the system is stable or not. Also find the transient 

and steady state parameters.  

 

Solution: 

    

    
 

 

      
 

Therefore, s1= -0.5+j  and  s2= -0.5-j   

Since the poles S1 and S2 are at the right hand side RHS 

Then the system is stable. 

Comparing with the second order standard form; 

n=1 rad/sec    and   =0.5 (underdamped). 

Now;  

   
 

  
           

    
     √  

 

       √     0.0265= 2.65% 

     √  
     √                       
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                     

Also        (
  

 
)       (

     

   
)       

Therefore;  

   
   

  
 

      

     
               

and  

   
 

  
 

 

     
               

Example 4.6:  

Find the poles and Zeros of the following T.F. and locate on the s-plane. 

     
               

        
 

To find the Zeros, set the numerator to Zero. 

                               

          

 

then Zeros are  z1=-1, z2=-4, and z3=3. 

 

 

To find the Poles, set the denominator to zero.  
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The poles are then,  p1=2 and p2=4. 

Example 4.7:  

For the given system, determine the values of  K and Kh so that maximum over shoot to unit 

step input is 25% and over shoot time equal 

2 seconds. 

Solution: 

Since Mp=0.25, then 

  √
         

            
     

and  

     
 

  
 

 

  √  
 

                        

From the system diagram,  the system T.F. is 

    

    
 

 
  

  
 
         

 
 

           
 

By comparing with the second order standard form, obtaining; 

    
               

and 
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                  
   

 
 

          

    
        

Exercises: 

1- For the given system, determine the values of  K and Kh so that maximum over shoot to 

unit step input is 0.2 and over shoot time equal 1 seconds. Determine the rise time and 

settling time. 

 

2- For the control system shown, if =0.6 and n=5 rad/sec , determine tp, d , ts , tr , and Mp. 

Also determine J, B,(k=2) for the system when the input is unit step. Also find the final value 

of output and steady state error and maximum value. 

 

3- Consider the system shown. Find the rise time, peak time, maximum overshoot, and 

settling time when the system is subjected to a unit-step input. 

 

 

 

 

R(s) + 

- 
C(s) 
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4- For the system shown with unit step input; calculate all time response parameters (Tr , TP , 

TS, and Mp).   

 

 

 

 

5- Design a second order system with unit step input and peak time equal or less than (0.8 

sec ) and maximum overshoot equal or less than ( 6% ). Also calculate time response 

parameters (Tr , and TS). 

 

 

 

 

 

 

 

 

  

𝑆    𝑆    
 

 

  
 

R(S) 

C(S) + 

_ 


