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LECTURE FIVE 

Stability Criteria 

 

5.1 Routh’s Stability Criterion 

 

The most important problem in linear control systems concerns stability. That is, under what 

conditions will a system become unstable? If it is unstable, how should we stabilize the 

system? It was stated before that a control system is stable if and only if all closed-loop poles 

lie in the left-half s plane. Most linear closed-loop systems have closed-loop transfer 

functions of the form: 

 

where the a’s and b’s are constants and m ≤ n. A simple criterion, known as Routh’s stability 

criterion, enables us to determine the number of closed-loop poles that lie in the right-half s 

plane without having to factor the denominator polynomial. 

 

The procedure in Routh’s stability criterion is as follows: 

 

1. Write the polynomial of the denominator in (s) in the following form: 

 

                                                                              (5.1) 

 

where the coefficients are real quantities. We assume that an Z 0; that is, any zero root has 

been removed. 
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2- If any of the coefficients are zero or negative in the presence of at least one positive 

coefficient, a root or roots exist that are imaginary or that have positive real parts. Therefore, 

in such a case, the system is not stable. If we are interested in only the absolute stability, 

there is no need to follow the procedure further. Note that all the coefficients must be 

positive. This is a necessary condition, as may be seen from the following argument: A 

polynomial in s having real coefficients can always be factored into linear and quadratic 

factors, such as (s + a) and (s
2 
+ b s + c), where a, b, and c are real. The linear factors yield 

real roots and the quadratic factors yield complex-conjugate roots of the polynomial. The 

factor (s
2
+ b s + c) yields roots having negative real parts only if b and c are both positive. 

For all roots to have negative real parts, the constants a, b, c, and so on, in all factors must be 

positive. 

 

3. If all coefficients are positive, arrange the coefficients of the polynomial in rows and 

columns according to the following pattern: 
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The process of forming rows continues until we run out of elements. (The total number of 

rows is n+1). The coefficients b1, b2, b3, and so on, are evaluated as follows: 

 

The evaluation of the b’s is continued until the remaining ones are all zero. The same pattern 

of cross-multiplying the coefficients of the two previous rows is followed in evaluating the 

c’s, d’s, e’s, and so on. That is, 

 

Therefor; 

 

 

 

If the system is stable (all Coefficients of the denominator should be positive) 



3rd Year-Computer Communication Engineering-RUC Control Theory  
            

Dr. Mohammed Saheb Khesbak   Page 62 

 

Example 5.1: Apply Routh’s stability criterion to find the conditions of selecting the 

coefficients to ensure stability to a system having the following third-order polynomial: 

 

 

Solution: 

Since all the coefficients are positive numbers. The array of coefficients becomes 

 

The condition that all roots have negative real parts is given by 

 

and this is the condition that will ensure stability to the system. 

 

Example 5.2:  Apply Routh’s stability criterion to the following fourth-order polynomial: 

 

 

Solution: 

Let us follow the procedure just presented and construct the array of coefficients. (The first 

two rows can be obtained directly from the given polynomial. The remaining terms are 

obtained from these. If any coefficients are missing, they may be replaced by zeros in the 

array). 
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As it is shown, the number of changes in sign of the coefficients in the first column is 2. This 

means that there are two roots with positive real parts. Note that the result is unchanged 

when the coefficients of any row are multiplied or divided by a positive number in order to 

simplify the computation. 

 

Example 5.3:  Apply Routh’s to determine the stability of the system with the below 

characteristic (denominator) equation: 

3 s
4
+ 10 s

3
+ 5 s

2
+ 5 s+ 2 = 0 

 

Solution: 

S
4 

3 5 2 

S
3
 10 5  

S
2
 3.5 2  

S
1
 -0.714   

S
0
 2   

 

Since there are two sign changes in the first column, then two roots lie on the R.H.S. of s-

plane. This means that the system is unstable. 
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Special Cases: If a first-column term in any row is zero, but the remaining terms are not 

zero or there is no remaining term, then the zero term is replaced by a very small positive 

number (d) and the rest of the array is evaluated. For example, consider the following 

equation: 

                                                                                                 (5.2) 

The array of coefficients is 

 

If the sign of the coefficient above the zero (d) is the same as that below it, it indicates that 

there are pair of imaginary roots. Actually, Equation (5.2) has two roots at s=± j. 

 

If, however, the sign of the coefficient above the zero (d) is opposite that below it, it 

indicates that there is one sign change. For example, for the equation 

 

the array of coefficients is 

 

 

There are two sign changes of the coefficients in the first column. So there are two roots in 

the right-half s plane. This agrees with the correct result indicated by the factored form of the 

polynomial equation. 
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Example 5.4:  Apply Routh’s to determine the stability of the system with the below 

characteristic (denominator) equation: 

s
5
+ s

4
+ 2 s

3
+ 2 s

2
+ 3 s+ 5 = 0 

 

Solution: 

S
5 

1 2 3 

S
4 

1 2 5 

S
3
 d -2  

S
2
     

 
 

5  

S
1
          

    
 

  

S
0
 5   

 

Therefore, the system is unstable because there are two changes in sign in first column. 

 

 

5.2 Application of Routh’s Stability Criterion to Control-System Analysis 

 

Routh’s stability criterion is of limited usefulness in linear control-system analysis, mainly 

because it does not suggest how to improve relative stability or how to stabilize an unstable 

system. It is possible, however, to determine the  effects of changing one or two parameters 

of a system by examining the values that cause instability. In the following, we shall consider 

the problem of determining the stability range of a parameter value. 
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Example 5.5:  For the system shown below, determine the range of (K) that ensures system 

stability. 

 

Solution: 

The closed loop transfer function is: 

 

The characteristic equation is 

 

The array of coefficients becomes 

      

 

For stability, (K) must be positive, and all coefficients in the first column must be positive. 

Therefore, 

 

When k=14/9 the system becomes oscillatory and, mathematically, the oscillation is 

sustained at constant amplitude. 
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Example 5.6:  For the system with characteristic equation below, determine the range of (K) 

for which the system is stable. 

                                                       S
3 
+ 3 K S

2 
+ KS+2 S + 4=0 

 

Solution: 

Rearranging the equation; 

S
3 
+ 3 K S

2 
+ (K+2) S + 4=0 

Applying Routh’s array as below; 

S
3
 1 (K+2)  

S
2
 3K 4  

    (   )   

  
 

  

S
0
 4   

                       

Now to ensure system stability, below conditions must be satisfied; 

    

also; 

  (   )   

  
             (   )                            

 

                 this will give two values of K; 

either   K > (-1+1.526) > 0.526   or    K > (-1-1.526)  >  -2.526. 

 

and since K is positive, then for stability; 

K  >  0.526 
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Example 5.7:  For the system with characteristic equation below, determine the range of (K) 

for which the system is stable. 

                                                       S
4 
+20 K S

3 
+ 5 S

2 
+ 10 S + 15=0 

 

Solution: 

Applying Routh’s array as below; 

S
4
 1 5 15 

S
3
 20K 10  

S
2
 

  
 

  
 

15  

S
1
 

   
      

      
 

  

S
0
 15   

 

Now; first of all    K>0  

And from 3
rd

 expression in the first column, 

  
 

  
         

 

  
                                      

While the 4
th

 expression in the first column gives; 

 

   
      

      
            

      

      
                       

 

                  

This will give   K=0.083 ± j 0.098 

 

And since K is complex number, the system is unstable  
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Exercises: 

 

For the system with characteristic equations below, determine the range of (K) for which the 

system is stable. 

 

1-                                    S
4 
+20 S

3 
+ 224 S

2 
+ 1240 S + 2400+K=0 

2-                                    S
3 
+ (K+0.5)  S

2 
+ 4K S + 50=0 

3-                                    S
4 
+4 S

3 
+ 4 S

2 
+ 3 S + K=0 

4-                                    S
3 
+ 8 S

2 
+ 15 S + K S+ 2K=0 

5-                                    0.1 S
3 
+ 0.25 S

2 
+ 2 S + K=0 

6-                                    (K+1) S
2 
+ (3K-0.9) S + (2K-0.1)=0 

7-                                    S
3 
+ 3K S

2 
+ (K+2) S + 4=0 

8-                                    S
3 
+ 10 S

2 
+ (21+K) S + 13 K=0 

9-                                    S
4 
+12 S

3 
+ 69 S

2 
+ 198 S + (200+K)=0 
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5.3 Control Systems Analysis by the Root-Locus Method 

 

ROOT-LOCUS PLOTS : 

 

Angle and Magnitude Conditions: Consider the negative feedback system shown in figure 

below. The closed-loop transfer function is; 

                                          

The characteristic equation for this closed-loop system is 

or                                  

 

Here we assume that G(s)H(s) is a ratio of polynomials in s. Since G(s)H(s) is a complex 

quantity, equation above can be split into two equations by equating the angles and 

magnitudes of both sides, respectively, to obtain the following: 

Angle condition: 

                                         (5.3) 

Magnitude condition: 

                                                                                                (5.4) 

The values of (s) that fulfil both the angle and magnitude conditions are the roots of the 

characteristic equation, or the closed-loop poles. A locus of the points in the complex plane 

satisfying the angle condition alone is the root locus. The roots of the characteristic 
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equation (the closed-loop poles) corresponding to a given value of the gain can be 

determined from the magnitude condition. 

 

In many cases, G(s)H(s) involves a gain parameter K, and the characteristic equation may be 

written as 

 

Then the root loci for the system are the loci of the closed-loop poles as the gain K is 

varied from zero to infinity. Note that to begin sketching the root loci of a system by the 

root-locus method we must know the location of the poles and zeros of G(s)H(s). Remember 

that the angles of the complex quantities originating from the open-loop poles and open-loop 

zeros to the test point s are measured in the counter clockwise direction. For example, if 

G(s)H(s)is given by 

 

 

where –p2 and –p3 are complex-conjugate poles, then the angle of G(s)H(s) is 

 

 

 

where ф1 , ɵ1 , ɵ2 , ɵ3 , and ɵ4 are measured counter clockwise as shown in Figures 5.1(a) 

and (b).The magnitude of G(s)H(s) for this system is 
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where A1 , A2 , A3 , A4 , and B1 are the magnitudes of the complex quantities s+p1 , s+p2, 

s+p3, s+p4 , and s+z1 , respectively. 

 

In what follows, two illustrative examples for constructing root-locus plots will be presented. 

Although computer approaches to the construction of the root loci are easily available, here 

we shall use graphical computation, combined with inspection, to determine the root loci 

upon which the roots of the characteristic equation of the closed-loop system must lie. Such a 

graphical approach will enhance understanding of how the closed-loop poles move in the 

complex plane as the open loop poles and zeros are moved. 
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Example 5.7: Plot the root locus pattern of a system whose forward path transfer function is: 

 ( )  
   

    
 

Solution: Since there is one pole at s= -20, the plot then starts at s= -20 on the real axis. 

Furthermore, since this pole terminates at one zero at s∞ , then the root locus terminates at 

∞ from pole s= -2 as shown in the following root locus plot. 

 

 

 

 

Example 5.8: Plot the root locus pattern of a system whose forward path transfer function is: 

 ( )  
 

(   ) (   )
 

Solution: There are two poles at s= -3 and s= -4 and no zero exist. These poles have been 

located as shown in the following figure. Since there existing two poles, there are two root-

loci both terminating at (∞) . Now taking test point between s= -2 and s= -4, we find that the 

root locus exist between these poles because the sum of poles and zeros to the right hand 

side is odd.  

 

While if the test point is between s= -4 and ∞, root locus found to not existing because the 

sum of poles and zeros to the right hand side is even.  

 

Breakaway points may be found as; 

 

  
 ( )                       

Which means that the root locus will depart (breakout) at the half the distance between the 

poles s=-3 and s=-4. 

S= -2 

S ∞ 

j 

σ 

S= - 3 

S= - 4 

j 

σ 
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The Asymptotes to the root loci at infinity may be found as; 

   
   (    )

   
             

Therefore, the complete root-locus is shown below : 

 

 

 

 

 

 

Example 5.9: Plot the root locus pattern of a system whose forward path transfer function is: 

 ( )  
 

 (   ) (   )
 

Solution: 

There are 3 poles at s=0, s= -2, and s=-3 and no zeros. Since there are 3 poles, there are three 

root loci. Now to determine which of these 3 root loci are on the root locus and which is not, 

we should select test points P1 (between s=0 and s= -2), P2 (between s= -2 and s= -3), and 

P3 (between s= -3 and s∞) as shown in the figure below; 

 

 

 

 

 

 

S= - 3 

S= - 4 

j 

σ 

S= - 2 

S= - 3 

j 

σ 

S= 0 

P3 
P2 P1 
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Now since P1and P3 have ODD number of poles and zeros to their right side, then P1 and P3 

are part of ROOT-LOCUS. On the other hand, P2 is not part of the ROOT LOCUS because 

it has an even number of poles and zeros to its right side. 

 

 

Breakaway from the real axis : 

Characteristic equation is 

              

then   
  ( )

  
              

 

and this will give    s= -0.784 and s= -2.549 

 

Now, since there is no root locus between  s= -2 and s= -3, therefore s= -0.784 is the 

breakaway point. 

 

Asymptotes to the root-loci: 

 

       
   

 
      

    
      

 
       

 

Intersection of the Asymptotes on real axis:  

 

  
∑       ∑     

                               
  
(     )  ( )
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The three asymptotes with centre of (s= -1.667) making angles ±60 and ± 180 are shown in 

figure below; 

 

 

 

 

 

 

 

 

 

 

 

Intersection with Imaginary axis: 

 ( )  
 

 (   ) (   )
  

 

          
   

 

          
 

 

 ( )  
 

      (   )
  
      (   )

      (   )
  
      (   )

     (   ) 
 

 ( )   
    

     (   ) 
  

(   )

     (   ) 
 

 

Now equating the imaginary part to zero, get; 

 
(   )

     (   ) 
          (   )     

S= - 2 

S= - 3 

j 

σ 

S= 0 

S= - 1.667 
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therefore,  

   √          

 

 

 

The complete root – locus pattern is shown in the figure below; 

 

 

 

 

 

 

 

 

 

 

Example 5.10: Consider the negative feedback system shown in figure below. (We assume 

that the value of gain K is nonnegative.) For this system, 

 

       

 

Let us sketch the root-locus plot and then determine the value of K such that the damping 

ratio  of a pair of dominant complex-conjugate closed-loop poles is 0.5. 

S= - 2 

S= - 3 

j 

σ 

S= 0 

S= - 1.667 

S= j 2.449 

S= - j 2.449 
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For the given system, the angle condition becomes 

 

 

The magnitude condition is 

 

 

Determine the root loci on the real axis: The first step in constructing a root-locus plot is to 

locate the open-loop poles, s=0, s= –1, and s= –2, in the complex plane. (There are no open 

loop zeros in this system.) The locations of the open-loop poles are indicated by crosses, 

while the locations of the open-loop zeros will be indicated by small circles). 

 

Note that the starting points of the root loci (the points corresponding to K=0) are open-

loop poles. The number of individual root loci for this system is three, which is the same as 

the number of open-loop poles. To determine the root loci on the real axis, we select a test 

point, s.  If (s) is between s=0 and s= -1, then the test point has an odd number of poles and 

zeros on its right side. Also it can be found by (another way); 

 

Thus; 

 

and the angle condition is satisfied. Therefore, the portion of the negative real axis between 

0 and –1 forms a portion of the root locus. If a test point is selected between –1 and –2, then 
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and 

 

 

It can be seen that the angle condition is not satisfied. However the test point here has even 

number of poles and zeros on its right side, therefore, the negative real axis from –1 to –2 is 

not a part of the root locus. Similarly, if a test point is located on the negative real axis 

from –2 to –∞, the angle condition is satisfied and the test point here has odd number of 

poles and zeros on its right side. Thus, root loci exist on the negative real axis between 0 

and –1 and between –2 and –∞. 

 

Determine the asymptotes of the root loci: The asymptotes of the root loci as s approaches 

infinity can be determined as follows: If a test point s is selected very far from the origin, 

then 

 

 

Since the angle repeats itself as K is varied, the distinct angles for the asymptotes are 

determined as 60°, –60°, and 180°. Thus, there are three asymptotes. The one having the 

angle of 180° is the negative real axis.  

 

Before we can draw these asymptotes in the complex plane, we must find the point where 

they intersect the real axis.  
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∑       ∑     

                               
  
(     )  ( )

   
     

 

Intersection with imaginary axis: 

 ( )  
 

 (   ) (   )
 

 

         

 
 

     (   )
 
     (  )

     (   )
 

 ( )  
 (     (   ))

   (   ) 
   

Equating the imaginary part to zero, results in; 

   √  

These points can also be found by use of Routh’s stability criterion as follows: Since the 

characteristic equation for the present system is 

 

the Routh array becomes 

 

 

The value of K  that makes the s1 term in the first column equal zero is K=6  .The crossing 

points on the imaginary axis can then be found by solving the auxiliary equation obtained 

from the s2 row; that is, 
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which yields; 

 

 

 

 

Determine the breakaway point: To plot root loci accurately, we must find the breakaway 

points, where the root-locus branches originating from the poles at 0 and –1 break away (as 

K is increased) from the real axis and move into the complex plane. The breakaway point 

corresponds to a point in the s plane where multiple roots of the characteristic equation 

occur. A simple method for finding the breakaway point is available. We shall present this 

method in the following: Let us write the characteristic equation as 
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where A(s) and B(s) do not contain K. Note that f(s)=0 has multiple roots at points where 

 

Fter a series of derivations and substitutions, the breakaway points can be simply determined 

from the roots of: 

 

For the present example, the characteristic equation G(s)+1=0 is given by 

   or   

 

By setting dK/ds=0, we obtain 

   or      

 

Since the breakaway point must lie on a root locus between 0 and –1, it is clear that s=–

0.4226 corresponds to the actual breakaway point. Point s= –1.5774 is not on the root locus. 

Hence, this point is not an actual breakaway or break-in point. In fact, evaluation of the 

values of   K  corresponding to s= –0.4226 and s= –1.5774 yields: 
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Draw the root loci, based on the information obtained in the foregoing steps, as shown in 

figure below. 

 

Determine a pair of dominant complex-conjugate closed-loop poles such that the damping 

ratio  is 0.5. Closed-loop poles with =0.5 lie on lines passing through the origin and 

making the angles  with the negative real axis. From last 

figure, such closed loop poles having =0.5 are obtained as follows: 

 

 

The value of K that yields such poles is found from the magnitude condition as follows: 
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Using this value of K, the third pole is found at s=–2.3326. 

Note that, from step 4, it can be seen that for (K=6) the dominant closed-loop poles lie on the 

imaginary axis at  With this value of K, the system will exhibit sustained 

oscillations. For K>6, the dominant closed-loop poles lie in the right-half s plane, resulting in 

an unstable system. Finally, note that, if necessary, the root loci can be easily graduated in 

terms of (K) by use of the magnitude condition. We simply pick out a point on a root locus, 

measure the magnitudes of the three complex quantities s, s+1, and s+2, and multiply these 

magnitudes; the product is equal to the gain value K at that point, or 

 

 

 

Example 5.11: In this example, we shall sketch the root-locus plot of a system with 

complex-conjugate open-loop poles. Consider the negative feedback system shown in figure 

below. For this system, 

     

where K ≥ 0. It is seen that G(s) has a pair of complex-conjugate poles at 

 

 

Determine the root loci on the real axis: For any test point s on the real axis, the sum of the 

angular contributions of the complex-conjugate poles is 360°, as shown in the following 

figure. 
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Thus the net effect of the complex-conjugate poles is zero on the real axis. The location of 

the root locus on the real axis is determined from the open-loop zero on the negative real 

axis. A simple test reveals that a section of the negative real axis, that between –2 and – ∞, is 

a part of the root locus. It is noted that, since this locus lies between two zeros (at s= –2 and 

s= –∞), it is actually a part of two root loci, each of which starts from one of the two 

complex-conjugate poles. In other words, two root loci break in the part of the negative real 

axis between –2 and – ∞. Since there are two open-loop poles and one zero, there is one 

asymptote, which coincides with the negative real axis. 

 

Determine the angle of departure from the complex-conjugate open-loop poles: The 

presence of a pair of complex-conjugate open-loop poles requires the determination of the 

angle of departure from these poles. Knowledge of this angle is important, since the root 

locus near complex pole yields information as to whether the locus originating from the 

complex pole migrates toward the real axis or extends toward the asymptote. 
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Referring to figure below, if we choose a test point and move it in the very vicinity of the 

complex open-loop pole at s= –p1, we find that the sum of the angular contributions from the 

pole at s= p2 and zero at s= –z1 to the test point can be considered remaining the same. If the 

test point is to be on the root locus, then the sum of   , 

where k=0, 1, 2,p .Thus, in the example, 

or   

 

The angle of departure is then 
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Since the root locus is symmetric about the real axis, the angle of departure from the pole at 

 

 

3. Determine the break-in point: A break-in point exists where a pair of root-locus branches 

meets as K is increased. For this problem, the break-in point can be found as follows: Since 

 

We have 

 

Which gives 

   or    

 

Notice that point s= –3.7320 is on the root locus. Hence this point is an actual break-in point. 

(Note that at point s= –3.7320 the corresponding gain value is K=5.4641.) Since point s= –

0.2680 is not on the root locus, it cannot be a break-in point. (For point s= –0.2680, the 

corresponding gain value is K= –1.4641). 

 

4. Sketch a root-locus plot, based on the information obtained in the foregoing steps: To 

determine accurate root loci, several points must be found by trial and error between the 

breaking point and the complex open-loop poles. (To facilitate sketching the root-locus plot, 

we should find the direction in which the test point should be moved by mentally 

summing up the changes on the angles of the poles and zeros). Figure below shows a 

complete root-locus plot for the system considered. 
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The value of the gain K at any point on root locus can be found by applying the magnitude 

Condition. For example, the value of K at which the complex-conjugate closed-loop poles 

have the damping ratio =0.7 can be found by locating the roots, on root locus plot figure, 

and computing the value of K as follows: 

 

 

 

 

 

 

 


