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System Time Response Characteristics:

3.1 Introduction

After the discrete system was introduced, the time response of it will be investigated. Next,
regions in the s-plane are mapped into regions in the z-plane. Then by using the correlation
between regions in the two planes, the effect of the closed-loop z-plane poles on the system
transient response is discussed. Next, the effects of the system transfer characteristics on the

steady state system error are considered.

Now, the time response of discrete-time systems is introduced via the following examples.

Example 3.1:

Find the unit-step response for the first order system shown in Fig.3.1 below with sampling
time T=0.1 sec. Since the system of a temperature control system is often modeled as a first
order system, then this example might be considered as a model of temperature control

system.

R(s) + Els) l-¢T E(s) 4 C(s)
——— > —
_ﬁ: T=0.1s s s+2

(a)

o)

Fig 3.1 System and response

Now, using simple analysis;

C6) = T et R()
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Where G(2) is ;

= 1-e¢ 4 _z-1 4 -1_20 -
R R

using ' =0.1s ,then;

0.3625

G2) =088

Therefore, the closed system transfer function T(z) is;

T(z) = Cz) _ _G(z) _ 03625
R(z) 1+ G(z) z-0.4562
For a unit step function input R(t); R(z) = 3{lis] = z/(z = 1),
Then ; Cz) = 0.3625z _0667z _—0.661z
T (z-D(E-04562) z-1 z-04562

and by taking the inverse z-transform (to get c(kt));

c(kT) = 0.667[1 = (0.4562)"] u(kT)
By taking kT from 0.1 to 0.8 we may draw the system discrete time response using below
table (response shown in Fig.1.b). From the table and the figure as well it is seen that the

discrete response reaches a steady state of value 0.667.

kT | (kT c.(r)

Q 0 0

0.1 0.363 0.300
0.2 0.528 0.466
0.3 0.603 0.557
0.4 0.639 0.606
0.5 0.654 0.634
0.6 0.661 0.648

1.0 | 0.666 | 0.665
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Now; to show the effect of sampling on the system response, we will remove the sampler and

zero-order hold, and solve for the unit step response of the resulting analog system.

Gp(s)

Ris) + 4 Cis)
’—?—— m

The system after removing sampler and ZOH blockes
Therefore, the closed loop transfer function of the continuous system is;

__Gus) _ 4
n(s}_1+{i',(s)-s+6

where G,(s) = 4/(s + 2) is the plant transfer function. Hence the analog system unit-
step response is given by
4 0667 —0.667

C'(s)=s(s+6)- s T s5+6

and

(1) = 0.667(1 — ¢ ™)
The response is also shown at Fig.1.b.

Example 3.2:

Find the discrete time and continuous time response for the system shown in Fig. 3.2 for
sampling time T=1 sec, and compare between the two.

|<— Gis)
1+ e 1 C(s)
R($)=3 T=Is+ S T sis+ 1) i
Fig. 3.2 System block diagram
By analysis;

C(2) = T2 R(2)

1+ G(2)
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Also it can be shown that;

G _(z—'l)[ 1 ] _z—l[z[(l—1+e")z+@-e"—e")]]_ 0.368z + 0.264
(z) = z )G +1) r=1_ z (z -1z -¢" "~ 22 - 1.368z + 0.368
Then C(z)  _G(z) _0.3682 +0.264
Rz 1+G(z) 2'-z+0632
Since
R(z) = P

then _ 20368z +0.264) _
==+ 063

using long division ;
C(z}) = 0.368z7' + 1.00z7° + 1402 +1.40z7* + 1.1527° + 0.90z™° + 0.80z™" + 0.87z*

+0.9927°+1.0827° + 1.08z27" + 10027 + 0.9827" +...
0.632

— =1

The final value of c(nT), obtained using the final-value theorem, is  Iim c(rT) = lim (z - 1)C(z) = 063
H—== z=+] .

b

The step response for this system is plotted in Fig.3. The response between sampling instants
was obtained from a simulation of the system. Moreover, the continuous response of the

system (without sampler and ZOH) was also plotted in Fig. 3.3 for comparison.

(o) A

1.5 Sampled-data system

/ Continuous system

T —————

L0 -

P

0
2 4 6 8 10 1(s)
Fig. 3.3 Discrete and continuous responses
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The Laplace transform of the unit impulse is R(s) = 1, and therefore the output for an impulse
IS

3.2 Review of Time Response

w,

2+ 2w,s + o'
which is 7(s) = Y(s)/R(s), the transfer function of the closed-loop system. The
transient response for an impulse function input is then

Y(s) =

o) = %ew sin(w,p1),

where g = V1 -2.0= gos“(._and 0<{<l

which is the derivative of the response to a step input. The impulse response of the second-
order system is shown in Figure 3.4 for several values of the damping ratio &. The designer is

able to select several alternative performance measures from the transient response of the

system for either a step or impulse input.

1.0
0.8

0.6

-0.6

Mo~ 2 3 4 5 6 7 8 9 10

Figure 3.4: Response of a 2™ order system to an impulse input.
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Standard performance measures are usually defined in terms of the step response of a system
as shown in Figure 3.5. The swiftness of the response is measured by the rise time Tr and
the peak time Tp. For under-damped systems with an overshoot, the 0-100% rise time is a
useful index. If the system is over-damped, then the peak time is not defined, and the 10-90%
rise time Tr, is normally used. The similarity with which the actual response matches the step
input is measured by the percent overshoot and settling time Ts. The percent overshoot is
defined as

Maximum Peak — Final Value

t hoot = 100
percentage overshoo FinalValue x

R e

i
| I 1
{r) ( : : :
¥y 10-6 . 4 . |
'l ) |
' | )
1 | |
I | |
I | |
|1 | |
I | |
\
0.1 == : ) : :
0 1 11 1 1 » Time
] ;
T, Peak Settling
time time
s
Rise time

Figure 3.5: Step Response of a control system.
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The settling time, Ts, is defined as the time required for the system to settle within a certain

percentage o of the input amplitude. This band of + ¢ is shown in Figure 5. For the second-

order system with closed-loop damping constant {w, and a response described by
y(t) =1 - -;—e""'"’ sin(w, Bt + 6)

we seek to determine the time Ts for which the response remains within 2% of the final

value. This occurs approximately when

Also; the peak time is

And the percentage over shoot is |

P.O. = 100e~¢*/V1 =¥

Also it might be written in the opposite way;
In2(P.0)
? + In?(P. 0)

And poles are located at

S;= 0 Fwg=—(w, Fjw, [1-7
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Example 3.3: The open loop gain of a closed loop system with unity feedback is;

2(S+8
um=&&mm=%§%

(a) Determine the closed loop transfer function T(S)=Y(S)/R(S).
(b) Calculate the settling, and peak time values.
(c) Calculate the percentage of maximum over-shoot.

Solution:
(@)
2(S + 8)
7(s) = Ge(S)GES)  SE+4 2(S + 8) . 2(5+9)
1+ G(S)G(S) 1+§giig CS(S+4)+2(S+8) S2+65+8

From the characteristic equation S? + 6S + 8 it can be deduced that »,=2.828 rad/sec and
then (=0.17677.

(b)

4
T = =
S = 017677 = 2.828 O %€¢
and
T i d 1.1286
= = = . Sec
(c)
n
/1—5
P.O0.=100* e

Then P.0.=56.8%
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3.3 Mapping the S-Plane into the Z-Plane

To introduce the topic, consider a function e(f), which is sampled with the
resulting starred transform £7*(s). At the sampling instants, the sampled signal is of
the same nature (and has the same values) as the continuous signal. For example,
if e(¢) is exponential, then the sampled signal is exponential at the sampling instants,
with the same amplitude and time constant as the continuous function. Ife(t) = ™

1 .z
E(S) _-5' 4 aa E(Z) _Z .

—al

€

Ss=o0tjw
Considering only the left hand side (Stable region);

and since z = eT then z=e(0t@OT = oTo ojwT
using the identity el 9T = cos T + jsinwT
then; z=2eT% coswT +jel%inwT

Also
7z =el? / wT

Consider first the mapping of the left half-plane portion of the primary strip
into the z-plane as shown in Figure 3.6.

The translation between the s — and z — plane is considerd here for the switching
frequency wg

w=w5=21rfs=21t7
Therefore;

wT = 2n
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Figure 3.6 Mapping the primary strip into the z-plane.

Figure 3.7 shows some cases of the effect of changing the real and imaginary parts in the s-

plane on the z-plane plot.
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Figure 3.7 Mapping constant damping loci into the z-plane.
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Figure 3.8 Mapping constant frequency loci into the z-plane.
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Figure 3.9 Corresponding pole locations between the s-plane and the z-plane.

Figure 3.9 was plotted where these s-plane poles result in z-plane poles at

Z2=€Naosje= €T =T /+oT = r/+0
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Thus roots of the characteristic equation that appear at z = r/=*0 result in a tran-
sient-response term of the form

A€ cos(wkT + ¢) = A(r)* cos(0k + &)
Example 3.4:

Find the s-plane poles for the system shown below

R(s) + o~ E(s) 1-em | E® [ 4 C(s)

—

\ T=0ls s s+2

The closed loop transfer function is found as ;

G(z) _ _0.3625
1+ G(z) z —0.4562
Hence the closed-loop characteristic equation is
z — 04562 =0

Therefore; to determine the first pole (and the only one);
z; = 04562 = 17 = 0

Hence s, = In(0.4562)/0.1, or s, = —7.848.

------------------------------------------------------------------------------------------- End of example

In figure 3.10 we may see and compare the stable versus the unstable regions in z-plane
(inside and outside the unity circle) depending on examples of time response signals.
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Figure 3.10 Transient response characteristics of the z-plane pole locations.
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In the discussion above, we considered the relationship between s-plane poles
and z-plane poles in a general way. We will now mathematically relate the s-plane
pole locations and the z-plane pole locations. We express in standard form the
s-plane second-order transfer function

which has the poles
$12 = ~lw, * jo, V 1 - ;2

where { is the damping ratio and w, is the natural frequency. The equivalent z-plane
poles occur at

z=¢€,, =" /20, TV]1 - > =r/+0
Hence E—g"’nr =r
or {w, T = —Inr Also, 0 = 0, TV1-10

Taking the ratio of the last two equations, we obtain 4 “Inr

Solving this equation for { yields

_ =Inr

Vi e

We then find w, to be
w, = % Vin’r + 6?

The time constant, 7, of the poles is then given by T = cho,, = %]1;

This equation can also be expressed as , = ¢ T"

Thus, given the complex pole location in the z-plane, we find the damping ratio, the
natural frequency, and the time constant of the pole -
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For the closed loop system transfer function below;

Example 3.5:

G(z) _ 0.368z + 0.264
1+G(z) 22—z +0632°
Thus the system characteristic equation is
22—z +0.632=(z — 0.5 —j0.618)(z — 0.5 + j0.618) = 0
The poles are then complex and occur at

z = 0.5 = j0.618 = 0.795/=51.0° = 0.795/=0.890 rad

T=1s

Therefore;

z=¢€"/*al =r/*oT = 0.795/+0.890

then

_ ~In(0.795)
~ [1n%(0.795) + (0.890)%]"*

¢ = 0.250

w0, = %[1::2(0.795) + (0.890)]"2 = 0.9191

-1

= n(0.705) _ 30

T

------------------------------------------------------------------------------------------- End of example
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An important characteristic of a control system 1s its ability to follow, or track, cer-
tain inputs with a minimum of error. The control system designer attempts to mini-
mize the system error to certain anticipated inputs. In this section the effects of the
system transfer characteristics on the steady-state system errors are considered.
Consider the system shown in Figure 3.11.

3.4 Steady - State Accuracy

R(s) . E(s) "
T

C(s)

1 G(s)

Figure 3.11 Discrete-time system.

C(z) __G(2)
R(z) 1+ G(z)

where G(z) = 3[G(s)]. The plant transfer function can always be expressed as
Kll@z - 2)
4
(z - D'I1(z - z)

As we shall see, the value of N has special significance and is called the system type.
For convenience in the following development, we define

G(z) =

, z;# 1, z;#1

)

=Kﬁ(z )
Hz=-2) .-

Note that K, is the open-loop plant dc gain with all poles at z = 1 removed.

Ky

the system error, e(t), is defined as the difference
between the system input and the system output. Or

E(z) = sle()] = R(z) — C(2)

Then, by substituting this equation in eq. *, then E(Z) = R(Z) _ G(Z) R(Z) = LZ)

1+G(2) 1+ G(2)
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The steady-state errors will now be derived for two common inputs—a position
(step) input and a velocity (ramp) input. First, for the unit-step input,

RErs z —1

Then, from the final-value theorem, the steady-state error is seen to be

eg(kT) = lim (z — 1)E(z) = h-r.l}(zlllc);l(zz()z)

And since R(z) —

provided that ei(kT) has a final value. The steady-state error is then

1
ealkl) = !'-!.n;l + G(z) 1+ lirr: G(z2)

We now define the position error constant as

K, = lim G(z)
z—1
Thenin , if N =0 [i.e., no polesin G(z) atz = 1], K, = K, and

_ 1 1
lr'J"“"U‘:T)_1+,‘r.jﬂ,_1+K‘.,:

For N = 1 (system type greater than or equal to one), K, = » and the steady-state
error is zero.

Consider next the unit-ramp input. In this case r(f) =1, R(z) = ( 1z 7
z —
: _ 1
and since egx(kT) = T+ ImGQ)
z—1
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Therefore,
Tz T

eﬁ(kT) = 11_1}1': (z — 1) + (Z — I)G'(Z) lEI}(Z - l)G(Z)

We now define the velocity error constant as

K, = hm (z -1DG(2) -—--—- #
2] T
Then if N =0, K, =0 and ei(kT) = ». For N =1, K, = K4/T and
1 T
es(kT) = -IZ, = Ko "~ 2

For N = 2 (system type greater than or equal to 2), K, = » and ey (kT) is zero.

The development above illustrates that, in general, increased system gain
and/or the addition of poles at z = 1 to the open-loop forward-path transfer function
tend to decrease steady-state errors.

Example 3.6:

Find the steady state error for the system shown below:

C(s)
— G{S} -

R(s) 4 E(s)

1-€e" K

Gs) = s L{s + 1}]
o l1-e™] k@z-1) 1

o Giz) = [ 2(s + 1)] z [ 2(s + 1)]

LK="+ T= e’ ~T¢T)
z (z-1)(z-¢€7)
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K(e"+T-1z+(1~-¢7-Te")]
(z-1)(z-¢€¢")

Then, from 9. *q , the system is type 1 and

_Kie K€"+ T-1)+(1-€e"-Te)]

G(z) =

L T(i-€¢7) &
Since G(z) has one pole at z = 1, the steady-state error to a step input is zero, and to
a ramp input is, from eq. *2 eulkT) = 1 _ 1 provided that the system is stable.
K, K

------------------------------------------------------------------------------------------- End of example

Example 3.7:

As a second example, consider again the system shown in last €xample , where, for this example,

t—e ™| 1-¢7
Glz) = 5[.9(5 + 1)] Tz-€"

Suppose that the design specification for this system requires that the steady-state error
to a unit ramp input be less than 0.01. Thus, from eq*1 , it is necessary that the
open-loop system be type 1 or greater and thus the open-loop function must have at
least one pole at z = 1. Since the plant does not contain a pole at z = 1, a digital
compensator of the form

K 12
z=]
will be added, to produce the resultant system shown inFigure 3.12. The compensator,

called a PI or proportional-plus-integral compensator, is of a form commonly used to
reduce steady-state errors. For this system eq*1 becomes :

D(z) = + Kp

K, = lim]l(z — D)D(2)G(2)

Dr. Mohammed Saheb Khesbak Page 87



4th Year-Computer Communication Engineering-RUC Digital Contraol

Employing the expressions above for D(z) and G(z), we see that

: Ki+Kp)z — Kp|l — €7
K, = lim (z - )(, r) £ ET _ K
z-=1 ( 1) i — € T
Thus K; equals 100T for the required steady-state error, provided that the system is

stable. The latter point is indeed an important consideration since the error analysis is
meaningless unless stability of the system is guaranteed.

' C(s)
R(s) + P ! D2y b—a! Gs)
T

Figure 3.12 System with compansator
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