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Preface

This book is intended to give the senior or beginning graduate student in mechanical engineering an
introduction to digital control of mechanical systems with an emphasis on applications. The desire
to write this book arose from my frustration with the existing texts on digital control, which—while
they were exhaustive—were better suited to reference needs than for tutorial use.

While the appearance of several new texts with a more student-oriented perspective has reduced my
frustration a little, I still feel there is a need for an introductory text such as this.

MATLAB has become an almost indispensable tool in the real-world analysis and design of control
systems, and this text includes many MATLAB scripts and examples.

My thanks go to my wife Anne, and four boys Paul, Keith, Mark, and Jeff for being patient during
the preparation and revision of this manuscript—also my late father Duke Starr who recognized that
any kid who liked mathematics and motorcycles can’t be all bad.

Albuquerque, New Mexico
November 2006
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Chapter 1

Introduction and Scope of this
Book

This book is intended to give the student an introduction to the field of digital control, with an
emphasis on applications. Both transform-based and state-variable approaches will be included,
with a brief introduction to system identification.

The material requires some understanding of the Laplace transform and assumes that the reader
has studied linear feedback control systems.

1.1 Continuous and Digital Control

1.1.1 Feedback control

The study of feedback control systems is concerned with using a measurement of the output of a
plant (device to be controlled) to modify its input. The controller is that part of the system that
receives the measurement of the plant output, then generates the plant input, hence closing the loop.
Control system design is the task of designing this controller such that the closed-loop system has
satisfactory performance. Broadly speaking, some goals of most closed-loop control systems are:

• Command Tracking . . . cause the output to track the reference input closely

• Disturbance Rejection . . . isolate the output from unwanted disturbance inputs

• Parameter Sensitivity . . . reduce the effect on the output of variations in plant parameters

These are goals of both continuous and digital control systems.

1
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Computer
+ -

A/D

Clock

D/A Plant

Sensor

r (t) e(t) e(kT ) u(kT ) u(t)

w(t)

y(t)

v(t )

ŷ(t)

r = reference input or setpoint
u = control force (actuator input)
y = controlled variable or output
ŷ = measurement of controlled variable
e = r − ŷ = error signal
w = disturbance acting on the plant
v = measurement noise
A/D = analog-to-digital converter
D/A = digital-to-analog converter

Figure 1.1: Basic digital control system.

1.1.2 Digital control

Digital control systems employ a computer as a fundamental component in the controller. The
computer typically receives a measurement of the controlled variable, also often receives the reference
input, and produces its output using an algorithm. This output is usually converted to an analog
signal using a D/A converter, then amplified by a power amplifier to drive the plant. A block
diagram of a typical digital control system is shown in Figure 1.1.

When compared to a continuous-time system, there are three new elements in the block diagram of
Figure 1.1:

• A/D converter. This device acts on a continuous physical variable, typically a voltage, and
converts it into an integer number. A/D converters typically have unipolar ranges of 0–5 V,
0–10 V, or bipolar ranges of ± 5 V, or ± 10 V. These are often jumper-selectable. The A/D
conversion causes quantization q, given by the resolution of the converter in bits. Common
resolutions are 8 bits (256 levels), and 12 bits (4096 levels). A 12-bit A/D converter of range
±10 volts would have a conversion quantum of q = 20/4096 = 4.88 mV. Note that quantization
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is a nonlinear operation. The effect of quantization on a continuous signal is often called
quantization noise.

• D/A converter. This device converts an (integer) number to a voltage. The voltage ranges
and converter resolutions are the same as for the A/D converter. A D/A converter functions
as a zero-order hold, holding its output at a constant value until it receives the next discrete
input.

• Sampling. This is represented by the clock in Figure 1.1. The computer samples the error (or
it may sample both the setpoint and the measurement, thus forming the error internally) at
particular times. In this book we will assume that sampling is at a constant period T , which
is called the sampling period. The sampling frequency in Hz is 1/T . When a continuous signal
e(t) has been sampled, it is called a discrete signal and is denoted by e(kT ) or e(k) or ek.
Discrete signals are only mathematically defined at the sample instants tk = kT .

A system in which there are only discrete signals is called a discrete-time system. Systems with both
continuous and discrete variables are called sampled-data systems. When quantization is added, the
system may be called digital. Continuous, discrete, and “zero-order hold” (output of D/A) signals
are shown in Figure 1.2, where the signal is sin(t).

0 1 2 3 4 5 6 7 8 9 10
-1

0

1
Continuous

0 1 2 3 4 5 6 7 8 9 10
-1

0

1
Discrete

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

Time (seconds)

Output of D/A

Each sample 
is discretized

Sample held 
for one period

Figure 1.2: Three types of signals.



4 CHAPTER 1. INTRODUCTION AND SCOPE OF THIS BOOK

Much of the task of designing a digital controller is in accounting for the effects of quantization
and sampling, especially sampling. If both T and q are small, digital signals approach continuous
signals, and continuous methods of analysis and design may be used. However, when this is not the
case, continuous methods can lead to erroneous results.

1.2 Philosophy and Text Coverage

The philosophy of this course is to present the basic material necessary for the analysis and design
of digital control systems. We assume a background in continuous systems, and relate the digital
problem to its continuous counterpart. The emphasis is on understanding the physical reality behind
the analysis.

The eight chapters in this book contain the following material:

Chapter 1. This chapter. Describes philosophy and content of book. Some definitions. Rationale
for studying digital control.

Chapter 2. Sampled (discrete-time) variables. Introduction of the z-transform for discrete vari-
ables, which is analogous to the Laplace transform for continuous variables.

Chapter 3. Discrete simulations of continuous systems. Several methods of simulation are given,
specifically numerical integration, pole-zero mapping, and zero-order hold equivalence.

Chapter 4. Frequency spectra of sampled signals. The impulse modulation model of sampling.
Aliasing and its effects.

Chapter 5. Transform-based design of digital control systems, primarily using the root locus
method. When sampling can be ignored, and when it must be considered.

Chapter 6. State-space modeling and analysis of continuous systems, including nonlinear systems.

Chapter 7. State-space design of digital control systems, primarily using pole placement. Control
law design and state estimation. Introduction of the reference input.

Chapter 8. System identification using the least squares method.

It is the author’s observation that digital control systems are so widely used that it is rare to see a
completely continuous control system. There are several reasons for this:

• Computers are getting faster, cheaper, and more reliable.

• Control systems incorporating computers are inherently more flexible than those without, e.g.
during the prototyping phase, tuning gains to achieve satisfactory performance is simply a
matter of changing numbers in a computer program, rather than changing hardware.

• Advanced control techniques such as optimal and adaptive control can only be realized digitally.
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• Computers are often already present in mechanical systems for communication, visualization,
etc., thus their use for control is logical. The reverse is also true—if a computer is used for
control, it can also address many other functions which may be needed in a system.

These days, for anyone with a desire to design and construct working control systems, at least an
introductory course in digital control (like this one) is absolutely necessary.

Homework Problems

1. Go back to your continuous control textbook and review the following concepts:

• Feedback Control

• Laplace Transform

• Transfer Functions

• Block Diagrams

2. Cite examples of physical variables that are:

• Continuous

• Discrete



6 CHAPTER 1. INTRODUCTION AND SCOPE OF THIS BOOK



Chapter 2

Linear Discrete Systems and the
Z-Transform

The primary new component of discrete (or digital, we won’t treat the effects of quantization)
systems is the notion of time discretization. No longer are we dealing with variables which are
functions of time, now we have sequences of discrete numbers. These discrete numbers may come
from sampling a continuous variable, or they may be generated within a computer. In either case,
the tools that were used in the analysis of continuous variables will no longer work. We need new
methods.

The z-transform bears exactly the same relationship to a discrete variable that the Laplace transform
bears to a continuous variable. This is the new tool we need, and the whole of transform-based digital
control system design turns on the z-transform.

2.1 Chapter Overview

In Section 2.2 linear difference equations, the discrete counterpart of linear differential equations,
will be introduced. Through solutions of difference equations we will get insight into discrete pole
locations and stability. Section 2.3 will present the z-transform, which operates on discrete variables
like y(k) or yk to produce functions of z, Y (z). The z-transform will lead to the discrete transfer
function, which can be represented with block diagrams composed of sums, gains, and unit delays.
The dynamic response of discrete systems will be presented in Section 2.4, where we will examine the
step, exponential, and damped sinusoidal functions. The correspondence between discrete signals
and the continuous signals from which they were obtained will be investigated in Section 2.5, where
we will derive a fundamental mapping linking the s and z planes. A method for obtaining the
frequency response of discrete systems will be briefly shown in Section 2.6. Some properties of the
z-transform will be discussed in Section 2.7, including several techniques for inverse transforming to
obtain f(kT ) or f(k) from F (z). A brief table of z-transforms appears in Section 2.9.

7
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2.2 Linear Difference Equations

Physical systems are modeled by (continuous) differential equations. The order of the system is the
order of the corresponding differential equation. Discrete systems, of course, cannot be modeled by
differential equations, but are instead represented by difference equations.

Consider the block diagram of Figure 2.1, where an A/D converter samples a continuous variable
e(t) to produce discrete variable e(kT ), then a computer processes these e(kT ) to produce discrete
output u(kT ).

A/D

Computer
e(t) e(kT )

T

u(kT )

Figure 2.1: A/D converter and computer

To generate the kth output sample u(kT ) or uk, the computer can make use of the following inputs
and (past) outputs:

inputs : e0, e1, e2. . ., ek

outputs : u0, u1, u2. . ., uk−1

This discrete relationship can be expressed in the form

u(k) = f(e0, e1, e2. . ., ek;u0, u1, u2. . ., uk−1) (2.1)

If the function f is linear, the relationship becomes a linear difference equation given by

uk = a1uk−1 + a2uk−2 + . . .+ anuk−n + b0ek + b1ek−1 + b2ek−2 + . . .+ bmek−m (2.2)

If the initial conditions and input are known, a difference equation can be simulated by simply
evaluating the equation.

Example

Consider the difference equation given by

uk = uk−1 + uk−2 (2.3)

with initial conditions u0 = 1 and u1 = 1. This equation computes the sequence known as Fibonacci1

numbers. Note that this difference equation has no input. . . don’t worry about that for now. Table 2.1
can then be constructed (assume all variables are zero for k < 0). Note that from the response shown
in Table 2.1 you would probably say that this system is unstable.

1Leonardo Fibonacci of Pisa, who introduced Arabic notation to the Latin world about 1200 A.D.
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Sample index k uk

0 1
1 1
2 2
3 3
4 5
5 8
6 13
7 21
...

...

Table 2.1: Behavior of difference equation

2.2.1 Solving Difference Equations

Although any difference equation with a given input can be “solved” in this manner, we need some
way to predict the behavior, a way to represent difference equations and discrete systems that is
generally useful.

Consider first the solution of a difference equation. With linear differential equations, we often
assume a solution, then see if it works2. For linear differential equations in time we often assume a
solution of the form

u(t) = Aest (2.4)

where s is a complex variable. Substitution of this into the differential equation will yield values of
s for which the solution is valid. The constant A will be determined by initial conditions.

A similar approach can be used with difference equations. Try a solution of the form

u(k) = Azk (2.5)

where z is a complex variable and of course k is the sample index. Substitition into 2.3 yields

Azk = Azk−1 +Azk−2 (2.6)

or
1 = z−1 + z−2 (2.7)

or
z2 − z − 1 = 0 (2.8)

Note that equation 2.8 is the characteristic equation for this system, for which the two roots z1 and
z2 are

z1 = −0.618, z2 = 1.6183 (2.9)

2The guy I’d like to meet is the guy who first figured out what to assume!
3This is the value of the Golden Ratio; see C. Moler, Numerical Computing with MATLAB.
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The general solution is therefore
u(k) = A1z

k
1 +A2z

k
2 (2.10)

where A1 and A2 may be found from initial conditions.

Of note here is the behavior of the two “modes” in equation 2.10. The mode associated with z1 will
decay, but the mode associated with z2 will grow. Clearly if a root z of the characteristic equation
has |z| > 1 that term will increase.

Since z is a complex variable, we can speak of the z-plane, a complex number plane. An observation
on stability that will be of fundamental importance is

If any roots of the characteristic equation of a discrete system have magnitude > 1, e.g.
are outside the unit circle of the z-plane, that system will be unstable.

This is our first observation on the correlation between z-plane root location and discrete system
dynamic response.

Example

Consider the numerical integration of a continuous time variable, as shown graphically in Figure 2.2

A

e(t)

t
tk −1 tk

ek −1

ek

Figure 2.2: Numerical integration.

We want the integral of the function e(t) from t = 0 to t as given by

I =

t∫
0

e(t)dt (2.11)

using only samples e0, e1, . . ., ek−1, ek. We assume that the integral from t = 0 to t = tk−1 is known,
and is uk−1. Thus we just want a procedure to take the “next step.”
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Although there a numerous methods, here we use trapezoidal integration, in which we approximate
the integral by computing the area A of the trapezoid in Figure 2.2. Thus

A =
tk − tk−1

2
(ek + ek−1) (2.12)

Assume constant stepsize, so tk − tk−1 = T , thus

uk = uk−1 +
T

2
(ek + ek−1) (2.13)

Equation 2.13 is a linear difference equation for trapezoidal integration. We will be using this
equation in Chapter 3.

2.3 The Z-Transform and the Discrete Transfer Function

First define the z-transform, then use it to find a discrete transfer function.

2.3.1 The z-Transform

Given a discrete variable e(k) or ek with values e0, e1, . . . , ek, . . ., the z-transform of this variable is
given by

E(z) = Z{ek} =

∞∑
k=0

ekz
−k (2.14)

The z-transform has the same role in the analysis and design of discrete systems as the Laplace
transform has in continuous systems. The transform given in equation 2.14 is the single-sided version
(summation index from 0 to ∞ rather than from −∞ to ∞, but this causes no loss of generality.

2.3.2 Discrete Transfer Function

Discrete systems can be modeled with transfer functions, just like linear continuous systems. Recall
that for continuous systems the transfer function represents the Laplace transform of the output
Y (s) over the Laplace transform of the input U(s), and is a ratio of polynomials b(s) and a(s), thus

G(s) =
Y (s)

U(s)
=

polynomial b(s)

polynomial a(s)
(2.15)

The order of b(s) must not be greater than the order of a(s) or the system will be non-causal.
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Let’s apply the z-transform to the difference equation for trapezoidal integration, equation 2.13. We
can do this by multiplying equation 2.13 by z−k and summing from 0 to ∞. . .

∞∑
k=0

ukz
−k =

∞∑
k=0

uk−1z
−k +

T

2

( ∞∑
k=0

ekz
−k +

∞∑
k=0

ek−1z
−k

)
(2.16)

For the two terms with the k − 1 subscript, let k − 1 = j and write them in the form

∞∑
k=0

uk−1z
−k = z−1

∞∑
j=−1

ujz
−j . (2.17)

Since with the single-sided transform all variables are zero for negative sample index, we can change
the lower limit from j = −1 to j = 0 and we have

∞∑
k=0

uk−1z
−k = z−1

∞∑
j=0

ujz
−j

= z−1U(z). (2.18)

Now equation 2.16 can be written

U(z) = z−1U(z) +
T

2

[
E(z) + z−1E(z)

]
(2.19)

which may be rearranged to yield discrete transfer function

U(z)

E(z)
=
T

2

z + 1

z − 1
=
T

2

1 + z−1

1− z−1
. (2.20)

Note that the transfer function of equation 2.20 can be expressed using either positive or negative
powers of variable z. Each form is preferable for certain uses, as will be seen later.

General Form of Discrete Transfer Function

In general, a discrete transfer function H(z) relating input E(z) and output U(z) will be

H(z) =
b0z

n + b1z
n−1 + b2z

n−2 + · · ·+ bmz
n−m

zn − a1zn−1 − a2zn−2 − · · · − an

=
b0 + b1z

−1 + b2z
−2 + · · ·+ bmz

−m

1− a1z−1 − a2z−2 − · · · − anz−n
=
U(z)

E(z)
(2.21)

=
b(z)

a(z)
a ratio of polynomials in z,

where the “1” in the denominator of the negative-power form of H(z) is required (this will be shown
later).
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Again, in equation 2.21 either the negative or positive power of z form can be used. Given that the
transfer function is the ratio of output or input z transforms, we can rearrange to get

U(z) = H(z)E(z), (2.22)

thus just like for continuous systems, the (z-transformed) output is given by the transfer function
times the (z-transformed) input.

Poles and Zeros of Discrete Transfer Function

Since z is a complex variable (like s), so is H(z), and we can define the poles and zeros of H(z) as

• poles: locations in z-plane where polynomial a(z) = 0

• zeros: locations in z-plane where polynomial b(z) = 0

For finding poles and zeros it is easier to use the version of H(z) with positive powers of z. The
poles and zeros may be real or complex. If complex, they occur in conjugate pairs.

The Unit Delay

If we let b1 = 1 and all other bn = 0; also let all an = 0, then the transfer function of equation 2.21
degenerates to

U(z)

E(z)
= z−1 = H(z) (2.23)

Doing the same thing to the general difference equation of 2.2 yields

uk = ek−1 (2.24)

which says the present value of the output equals the input delayed by one sample, or the previous
input.

Thus a transfer function of z−1 is a delay of one sample period, or a unit delay. These may be placed
in series to effect a delay of multiple samples.

2.3.3 Block Diagrams of Discrete Systems

All linear difference equations are composed of delays, multiplies, and adds, and we can represent
these operations in block diagrams. A block diagram will often be helpful in system visualization.
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Example

Consider the difference equation for trapezoidal integration,

uk = uk−1 +
T

2
(ek + ek−1) (2.25)

This difference equation is represented by the block diagram shown in Figure 2.3.

z−1

z−1

T

2

ek ek −1

+

+
+

+

uk

uk −1

Figure 2.3: Block diagram of trapezoidal integration.

Figure 2.3 can be reduced by standard block diagram reduction techniques and the transfer function
of 2.20 will result. This is left as an exercise for the student.

2.3.4 Going From Transfer Function to Difference Equation

It is useful to be able to easily convert a discrete system from its transfer function form to its
difference equation. If we take the general discrete transfer function of equation 2.21 given by

H(z) =
U(z)

E(z)
=
b0 + b1z

−1 + b2z
−2 + · · ·+ bmz

−m

1− a1z−1 − a2z−2 − · · · − anz−n
=
b(z)

a(z)
polynomials (2.26)

and cross-multiply, we get

U(z)− a1z
−1U(z)− a2z

−2U(z)− · · · = b0E(z) + b1z
−1E(z) + b2z

−2E(z) + · · · (2.27)

We know that U(z) may be inverse-transformed to yield sequence uk, likewise for E(z). And
multiplication by z−k simply delays by k samples. Hence by inspection the difference equation
corresponding to 2.27 is given by

uk − a1uk−1 − a2uk−2 − · · · = b0ek + b1ek−1 + b2ek−2 + · · · (2.28)

or
uk = a1uk−1 + a2uk−2 + · · ·+ b0ek + b1ek−1 + b2ek−2 + · · · (2.29)

Retracing the development, if the denominator polynomial a(z) in 2.21 did not contain the “1” term,
the output term uk would not be present in equation 2.29, i.e. there would be no output!
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2.3.5 Relation of the Transfer Function to the Unit Pulse Response

Recall that in continuous systems the transfer function of a thing is also equal to the Laplace
transform of the thing’s unit impulse response (easily shown. . . it might be good to verify it). A
similar relationship holds for discrete systems. Consider a system with transfer function

H(z) =
U(z)

E(z)

Let input ek be a unit pulse, i.e.

ek = 1 k = 0

= 0 k 6= 0 (2.30)

= δk (unit discrete pulse at sample zero)

The z-transform of the unit pulse is given by

E(z) =

∞∑
k=0

ekz
−k = e0z

0 = 1 (2.31)

hence U(z) = H(z), and the discrete transfer function H(z) is the z-transform of the system’s unit
pulse response.

Example

Let’s see if this works on the trapezoidal integrator. The difference equation is

uk = uk−1 +
T

2
(ek + ek−1) (2.32)

and the response to a unit pulse is shown in the accompanying table.

k ek uk

0 1 T/2
1 0 T
2 0 T
3 0 T
...

...
...

Now, going on faith that H(z) = U(z) for a unit pulse input, form this term as follows:

H(z) = U(z) =

∞∑
k=1

Tz−k +
T

2

=

∞∑
k=0

Tz−k − T

2
(2.33)
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To reduce the first term on the right of the “=” sign in 2.33 one must use the expression for the
sum of a geometric series. This sum is very useful in expressing z-transforms in closed form.

The sum of a geometric series is given by

∞∑
k=0

ark =
a

1− r
(2.34)

Using equation 2.34 to reduce 2.33 (the “r” term will be z−1) we obtain

H(z) = U(z) =
T

1− z−1
− T

2
=

2T − T (1− z−1)

2(1− z−1)

=
T + Tz−1

2(1− z−1)
=
T

2

1 + z−1

1− z−1
=
T

2

z + 1

z − 1
(2.35)

which agrees with the transfer function of equation 2.20.

2.4 Dynamic Response of Discrete Systems

In this section we will examine the dynamic response of discrete systems and begin to associate
z-plane pole and zero location with corresponding response. As a designer, it is important to have
a good “feel” for the correlation between z-plane pole and zero location and system response. We
have already seen the most basic correlation, that of stability. If any poles of the discrete transfer
function are outside the unit circle, the system is unstable.

Indeed, one can use the “brute force” technique, given by

1. Obtain the transfer function H(z) of the system.

2. Look up the z-transform of the input E(z) (a table of z transforms will appear at the end of
this chapter)

3. Form output U(z) = H(z)E(z)

4. Inverse transform U(z) to get uk.

This can be an involved process, especially inverse transforming. So it is worthwhile to develop a
good correlation between pole and zero location and dynamic response. Presumably you have some
knowledge of this correlation for continuous systems in the s-plane. . . if not, it would a good idea to
review that now.

Our approach here will be to take three basic discrete functions and examine both their z-transforms
(pole locations) and their discrete-domain character. These discrete functions will be
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1. Unit step.

2. Exponential.

3. Damped sinusoid.

In the three sections to follow, a numerical subscript will be used to indicate these functions, like
e1(k), e2(k), and e3(k).

2.4.1 Unit step

The unit step function is given by e1(k) = 1, k ≥ 0, with z-transform

E1(z) =

∞∑
k=0

z−k =
1

1− z−1
=

z

z − 1
. (2.36)

The unit step has a pole at z = 1 and a zero at z = 0. A sketch of the pole and zero locations for
the unit step and the corresponding discrete behavior are shown in Figure 2.4.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

k

Re

Im

Figure 2.4: Unit step pole/zero locations and response.

2.4.2 Exponential

The discrete exponential function is given by e2(k) = rk, k ≥ 0. The z-transform of this function is

E2(z) =

∞∑
k=0

rkz−k =

∞∑
k=0

(
rz−1

)k
=

1

1− rz−1
=

z

z − r
(2.37)

which has a single real pole at z = r, plus a zero at z = 0. There are a couple of observations about
the behavior of the exponential function.
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• Since the exponential function is e2(k) = rk, if |r| > 1 the response will grow. This corresponds
to a pole outside the unit circle. If this were the pulse response of a discrete system the system
would be unstable. (We saw this in Section 2.2.1).

• If −1 < r < 0, the pole is on the negative real axis (but within the unit circle) the response
will alternate signs. This form is unique to discrete systems and has no counterpart in the
continuous domain, as we will see later.

Three examples of pole and zero locations for the exponential function and the corresponding discrete
behavior are shown in Figure 2.5.
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Figure 2.5: Exponential pole/zero locations and response.

2.4.3 Damped Sinusoid

The discrete damped sinusoid is given by e3(k) = rk cos(kθ), k ≥ 0. Using an Euler expansion of the
cosine, we obtain

e3(k) = rk
(
ejkθ + e−jkθ

2

)
(2.38)
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Since the z-transform is linear, we can treat each term of equation 2.38 separately, then add the
z-transform of both terms at the end. Consider the first term (denominator 2 factored out):

e4(k) = rkejkθ. (2.39)

The z-transform of this discrete function is

E4(z) =

∞∑
k=0

rkejkθz−k =

∞∑
k=0

(
rejθz−1

)k
=

1

1− rejθz−1

=
z

z − rejθ
(2.40)

This function has a single complex pole at z = rejθ. Note that this function will grow if |r| > 1 and
will decay if |r| < 1. Now for the second term in 2.38, it can be shown that

Z {e5(k)} = Z
{
rke−jkθ

}
= E5(z) =

z

z − re−jθ
, (2.41)

and adding both expressions yields

E3(z) =

(
E4(z) + E5(z)

2

)
=

z(z − r cos θ)

z2 − 2r cos θz + r2
(2.42)

The poles of E3(z) are complex conjugates, and are

z = re±jθ

= r cos θ ± jr sin θ (2.43)

The zeros are real, at 0, r cos θ and are in line with the poles.

Example

Consider a discrete damped sinusoid with r = 0.7 and θ = 45◦ = π/4, thus

ek = e(k) = rk cos kθ = 0.7k cos
(
k
π

4

)
(2.44)

With an initial condition of e0 = 1, the behavior of this discrete function is shown in the table below:

k ek

0 1.000
1 0.495
2 0.000
3 -0.243
4 -0.240
5 -0.119
6 0.000
7 0.058
8 0.058
9 0.029
10 0.000
...

...

Re

Im
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Figure 2.6: Discrete damped sinusoidal response.

The pole/zero locations for this function are shown to the right of the table. A plot of this function
is shown in Figure 2.6.

Note that although the samples of Figure 2.6 are connected with straight lines for viewing clarity,
in a discrete system nothing truly exists between the samples.

As in continuous systems, higher-order discrete system response is always a combination of first
order (exponential) and second order (damped sinusoidal) terms. The notion of dominant poles
carries over to discrete systems also, with relative proximity to the z = 1 point defining dominance.
If a system has a single real pole or a complex pole pair much closer to the z = 1 point than other
poles or zeros, the dynamic response of the system will be dominated by that pole or poles.

2.4.4 Relationship between z-plane poles and transient response

We make the following observations:

1. Rate of decay of exponential response is determined by the radius r of the pole location.

• If r > 1 the sequence increases, larger r ⇒ faster growth.

• If r = 1 the sequence doesn’t grow, but doesn’t decay.

• If r < 1 the sequence decays, the closer r is to zero the faster the decay

(This is also true for the exponential envelope of damped sinusoids)
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2. The oscillation speed (number of samples/cycle) of complex poles is determined by their angle
θ. Given

ek = cos kθ (2.45)

let N be the number of samples per oscillation period, hence

cos kθ = cos [(k +N)θ] = cos(kθ +Nθ). (2.46)

Since N is defined to be the period, we must have

Nθ = 2π (2.47)

hence the period N is given by

N =
2π

θrad
=

360

θdeg
(2.48)

Example

In the previous example, we had a damped sinusoidal response. The period of this response is given
by

N =
360

θdeg
=

360

45
= 8 samples (2.49)

Examination of the response in both the table and figure verifies this period.

2.4.5 Effect of Zeros on Dynamic Response

In continuous transfer functions, zeros represent derivatives of the input which are transferred to
the output, thus speeding up response and increasing overshoot.

The same is true of discrete transfer functions, with the effect of a z-plane zero greater when it is
near z = 1, and its effect decreasing as it is far from z = 1. Note that a zero at z = 0 represents a
unit advance, just as a pole at z = 0 is a unit delay.

2.5 Correspondence between Discrete and Continuous Sig-
nals

So far in this chapter we have considered discrete systems only. It is time to make a connection
between discrete and continuous systems, and in the process to develop a very useful mathematical
link between the z domain and the s domain.

Consider discrete variable y(k) (yk could be used), where we now say that this y(k) was obtained
by sampling continuous signal y(t) at sample period T . We shall use a damped sinusoid for this
development.



22 CHAPTER 2. LINEAR DISCRETE SYSTEMS AND THE Z-TRANSFORM

The continuous signal
y(t) = e−at cos bt (2.50)

has Laplace transform

Y (s) =
s+ a

(s+ a)2 + b2
(2.51)

and the poles of Y (s) are at
s = −a± jb (2.52)

Now, if we sample e−at cos bt at sample period T , at sample times of t = kT , we will get discrete
signal

y(kT ) = e−akT cos bkT (2.53)

which is of the form rk cos kθ, where r and θ given by

r = e−aT , θ = bT (2.54)

We saw from Equation 2.43 that a discrete damped sinusoid has z-plane poles at

z = re±jθ (2.55)

which here becomes
z = re±jθ = e−aT e±jbT = e(−a±jb)T (2.56)

Compare the s-plane pole locations of 2.52 and the z-plane poles of 2.56. The pole locations are
related by

z = esT (2.57)

This is a general relationship between poles of continuous signals and their discrete counterparts,
and can be expressed in terms of pole locations:

Poles in the s-plane and z-plane are related by z = esT . Note that this is not true of zeros.

This mapping between the s and the z plane is very useful in design.

Example

Let’s examine the mapping between some contours in the s plane and z plane, with reference to
Figure 2.7.

• s-plane origin. This maps into z = esT = 1, on the unit circle.

• s-plane real axis from 0→ −∞. Using z = esT this maps into the z real axis from +1→ 0.

• s-plane jω axis. This maps into z = ejωT , which is the unit circle itself.



2.6. FREQUENCY RESPONSE OF DISCRETE SYSTEMS 23

j
π
T

σ

jω

Re

Im

s-plane z-plane

Figure 2.7: Contours in s and z planes.

• Line of constant damping ratio in s plane. This is a radial line, which maps into a logarithmic
spiral in the z plane.

Note that the stability boundary in the s-plane (jω axis) maps into the stability boundary in the
z-plane (unit circle).

However, this mapping is not unique, for consider

s2 = s1 + j
2π

T
(2.58)

where 2π
T = ωs, the sampling frequency in rad/sec. Mapping s2 to the z plane yields

z2 = es2T = e(s1+j 2π
T )T = es1T ej2π = es1T (2.59)

thus two different values of s map into the same value of z. These s values correspond to the poles
of a Laplace transform of a continuous signal, while the z value corresponds to the poles of a Z
transform of the discrete signal obtained by sampling the continuous signal. Hence the samples of
two different continuous signals will be the same. This phenomenon is called aliasing, and will be
examined mathematically in Chapter 4. The s-plane boundary at which aliasing occurs is shown by
the dashed line in Figure 2.7.

As a point moves up the s-plane jω axis from zero, the corresponding z-plane point travels counter-
clockwise around the unit circle, starting at +1. When s = j πT then z = −1. As s continues up the
jω axis, the value of z does not continue on the unit circle, but “jumps” out to another level. The
z-plane is actually a Riemann space, but we will not pursue this concept further.

2.6 Frequency Response of Discrete Systems

Recall that for a continuous system the amplitude ratio and phase angle can be found by substituting
s = jω into the s-domain transfer function, and evaluating the magnitude and angle of the resulting
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expression.

A similar technique works for discrete systems, and will be given without proof. Consider a discrete
system with input uk, output yk, and discrete transfer function

H(z) =
Y (z)

U(z)
(2.60)

If the input is a sinusoid at frequency ωo

uk = Uo cos(ωokT ) (2.61)

the steady-state output will also be sinusoidal, of the form

yk = Yo cos(ωokT + φ) (2.62)

where the amplitude ratio Yo/Uo and phase angle φ are given by

Yo
Uo

= |H(z)|z=ejωoT (2.63)

and
φ = 6 H(z)|z=ejωoT (2.64)

There will be numerous calculations of the frequency response of discrete systems in Chapter 3, so
we will defer examples until that point.

2.7 Z-Transform Properties

In this section are a few of the more useful properties of the z-transform.

1. Linearity. The z-transform is linear, i.e.

Z {αf1(kT ) + βf2(kT )} = αF1(z) + βF2(z)

2. Time Shift. We have seen this with the unit delay and advance:

Z {f(k + n)} = znF (z)

3. Final Value Theorem. If (z − 1)F (z) has all poles inside the unit circle, and has no poles on
the unit circle except possibly one pole at z = 1 (i.e.. not unstable), then the terms in the
sequence f(k) due to poles inside the unit circle→ 0 as k →∞. The only value left as k →∞
will be that due to the pole at z = 1, this value is the final value, and may be found as the
residue of the 1

z−1 term in a partial fraction expansion of F (z).

lim
k→∞

f(k) = (z − 1) F (z)|z=1 (2.65)

This is called the Final Value Theorem, and is very useful. The final value theorem may be
used to find the DC gain of a discrete transfer function.
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DC gain of transfer function

Given

H(z) =
Y (z)

U(z)
(2.66)

let input uk be a step of magnitude u∞, with z-transform

U(z) =
u∞z

z − 1
(2.67)

The output is given by

Y (z) = H(z)U(z) = H(z)
u∞z

z − 1
(2.68)

The final value of output sequence yk can be found using the final value theorem, and is

lim
k→∞

= y∞ = (z − 1) Y (z)|z=1 = (z − 1) H(z)
u∞z

z − 1

∣∣∣∣
z=1

= u∞H(1) (2.69)

Hence the DC gain of the transfer function H(z) is

y∞
u∞

= H(1) (2.70)

Note that to apply the final value theorem to a discrete variable, that variable must have a
final value. Responses that are unbounded will yield arithmetic results which are not valid.

When finding the DC gain of a transfer function, all poles of the transfer function must be
inside the unit circle.

Example

Consider the discrete transfer function given by

H(z) =
Y (z)

U(z)
=

z + 1

z2 − 0.5z + 0.5
=

z + 1

z − 0.25± j0.66
(2.71)

Note that it is necessary to find the pole locations of this transfer function to make sure it is stable
(all poles inside unit circle). The DC gain is given by

H(1) =
1 + 1

1− 0.5 + 0.5
= 2 (2.72)

Thus if this discrete system were given an input that eventually reached a constant value, the output
would eventually reach twice that value.

NOTE: If the denominator polynomial above were z2 − 0.5z + 2, the DC gain would evaluate to
H(1) = 0.8, but that is meaningless since the system is unstable.
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2.7.1 Inverse Transforming

Just as in continuous linear dynamic system analysis, given a z-transform F (z) it is of fundamental
importance to obtain the corresponding discrete sequence f(k). There are several methods.

Synthetic division

Given the definition of the z-transform for F (z), expressed as a ratio of polynomials in z−1:

F (z) =
∞

lim
k=0

f(k)z−k =
b(z−1)

a(z−1)
(2.73)

The discrete sequence fk may be recovered from F (z) by direct synthetic division. The coefficient
of z−k in the quotient will be the kth sample.

Example

An s-plane pole at s = −2 has time constant τ = 0.5 sec. Let sample period T = 0.1 sec, corre-
sponding to sampling frequency fs = 10 Hz. (Note that T is one-fifth τ . . . fast enough to “catch”
the dynamic response.) The s-plane pole corresponds to a z-plane pole at

z = esT = e−0.2 = 0.8187 (2.74)

Define a discrete transfer function with this pole and a DC gain of 1, thus

H(z) =
0.1813

z − 0.8187
=
Y (z)

U(z)
(2.75)

Let the input U(z) be a unit step, z/(z − 1), thus the response Y (z) is

Y (z) =
0.1813z

(z − 0.8187)(z − 1)
=

0.1813z

z2 − 1.8187z + 0.8187
=

0.1813z−1

1− 1.8187z−1 + 0.8187z−2
(2.76)

The sequence y(k) can be obtained by the synthetic division of the polynomials in Y (z) above. As
mentioned above, the coefficient of z0 in the quotient will be the 0th sample, the coefficient of z−1

will be the 1st sample, the coefficient of z−2 will be the 2nd sample, and so on. This method is
tedious for manual computation, but lends itself well to construction of a numerical algorithm for
inversion by computer.

Difference equation

In this method we convert the discrete transfer function to a difference equation (see Section 2.3.4),
then simply evaluate the equation as presented at the beginning of Section 2.2. We will use this
method on the system of the previous example.
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Example

Again take discrete transfer function

H(z) =
0.1813

z − 0.8187
=
Y (z)

U(z)
(2.77)

with corresponding transform equation

Y (z)− 0.8187z−1Y (z) = 0.1813z−1U(z) (2.78)

or

yk − 0.8187yk−1 = 0.1813uk−1 (2.79)

which yields

yk = 0.8187yk−1 + 0.1813uk−1 (2.80)

This difference equation can be evaluated for any input. For a unit step input one can generate the
following table:

k uk yk

0 1 0
1 1 0.1813
2 1 0.3297
3 1 0.4513
4 1 0.5507
5 1 0.6322
6 1 0.6989
7 1 0.7535
...

...
...

∞ 1 1.0000

Note that the response yk reaches 63% of the final value at k = 5, or t = 0.5 sec, the time constant
of the original continuous pole. This method is acceptable for hand calculation for a few samples,
but tedious for many samples.

Table lookup

Just as with the Laplace transform, the discrete sequence f(k) corresponding to F (z) may be found
by table lookup. It is often complicated by the need to do partial fraction expansion. Again, consider
the same example,

Y (z) =
0.1813z

(z − 0.8187)(z − 1)
=

0.1813z

z2 − 1.8187z + 0.8187
(2.81)
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This Y (z) is not in the table of Section 2.9 (admittedly a small table) so we must expand in partial
fractions

Y (z) =
0.1813z

(z − 0.8187)(z − 1)
=

0.1813z

z2 − 1.8187z + 0.8187
=

1

z − 1
− 0.8187

z − 0.8187
(2.82)

Transform numbers 1 and 3 from Section 2.9 come close to fitting these terms, but they must be
expressed as

Y (z) = (z−1)
z

z − 1
+ (0.8187z−1)

z

z − 0.8187
. (2.83)

Transform pairs 1 and 3 are then applicable, and since z−1 is the unit delay, we can write

yk = 1(k − 1) + 0.8187k (2.84)

which should yield the same result as the previous two methods.

MATLAB simulation

This is by far the most useful method, providing that the problem is numerical!. Consider the
previous transfer function,

H(z) =
0.1813

z − 0.8187
(2.85)

An easy way to “inverse transform” Y (z) using MATLAB is to employ the dlsim(num,den,u) func-
tion (discrete linear simulation), where num is the numerator polynomial of the transfer function
(coefficients of decreasing powers of z), den is the denominator polynomial, and u is the input. The
MATLAB script below does this for a unit step:

>>u = ones(size(0:10)); % Define input to be "1" from samples 0 to 10

>>num = [0 0.1813]; % Numerator coefficients of z

>>den = [1 -0.8187]; % Denominator coefficients of z

>>y = dlsim(num,den,u) % Do the simulation, displaying resulting samples

y =

0

0.1813

0.3297

0.4513

0.5507

0.6322

0.6989

0.7535

0.7982

0.8348

0.8647

>>plot(0:10,y,’o’,0:10,y); % Plot samples as "o" connected by lines
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Figure 2.8: Step response of discrete system.

The resulting samples are the same as the previous methods. The plot drawn by the script is shown.
Note that it plots an “o” at each sample point, this was determined by the argument in the plot

function. It also connects the points with lines, this is not true of the discrete output but it does
aid in viewing.
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Other MATLAB Functions (DSTEP, DDCGAIN)

Although dlsim is more general the DSTEP(NUM,DEN) function produces the unit step response
directly. I usually use it with a returned argument as follows:

>> y = dstep(num,den); % Obtain unit step response

>> plot(...); % Plot as desired...

The DC Gain K of a discrete transfer function may be found using ddcgain if the system is described
using explicit num and den, or using dcgain if the system is described using an “LTI” model (see
Section 2.8 below).

>> K = DDCGAIN(NUM,DEN); % NUM and DEN are vectors w/polynomial coefficients

>> K = DCGAIN(SYS); % SYS is a discrete transfer function in LTI format

2.8 A Word about LTI Systems and MATLAB functions

There has been a fundamental change in MATLAB since I first wrote these notes in 1998. This has
do to with the “LTI System” and the notion of “overloaded functions.”

2.8.1 LTI Systems

An LTI System is MATLAB’s representation of any dynamic system (either continuous- or discrete-
time, modeled using either transfer-function or state-variable formulation), and can be created in
several ways:

• TF—using numerator and denominator of transfer function (either continuous- or discrete-
time)

• ZPK—using zeros, poles, and gain of a transfer function (either...)

• SS—using state-space formulations (Chapters 6-8 of these notes)

Sometimes it is advantageous to cast systems into LTI format (certain MATLAB functions require
that)—otherwise it may be useful to have them in numerator/denominator, zero/pole/gain, or ex-
plicit state-space format. You will see all representations at various times in these notes. LTI
systems are created using the three MATLAB functions listed above (TF,ZPK,SS)—type help tf,
help zpk,etc in MATLAB to see more discussion.

Note that if a sample period T is used when creating an LTI model, then that model is automatically
made a discrete-time model. This is very important.
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2.8.2 Overloaded Functions

The concept of overloading has its origin in object-oriented programming, and means that the same
function will operate differently on different objects. For MATLAB, this means that the same
function can be used on different LTI systems, e.g. continuous-time and discrete-time.

As an example, consider the MATLAB step function, which produces the unit step response of a
dynamic system. An excerpt from the MATLAB “help” resource indicates:

>> help step

STEP Step response of LTI models.

STEP(SYS) plots the step response of the LTI model SYS (created

with either TF, ZPK, or SS). For multi-input models, independent

step commands are applied to each input channel. The time range

and number of points are chosen automatically.

...

Note that there is no mention of whether “sys” is continuous or discrete—the step function will
handle them both! When you create the LTI object you specify its nature; this is used by step to
compute the response correctly.

Consider the following two transfer functions G(s) and G(z):

G(s) =
1

s+ 1
G(z) =

0.1813

z − 0.8187
, T = 0.2

Now create LTI systems Gc and Gd for each transfer function:

>> Gc = tf([0 1],[1 1]) % Enter numerator and denominator polynomials

Transfer function:

1

-----

s + 1

>> Gd = tf([0 0.1813],[1 -0.8187],0.2) % Note sample period T = 0.2

Transfer function:

0.1813

----------

z - 0.8187

Sampling time: 0.2

By appending the “0.2” to the creation of Gd we obtained a discrete-time LTI model.

We can apply the step function to either model:
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>> step(Gc);

>> step(Gd);

Try it! Both commands will produce plots of the response; the discrete-time system will yield a
“stairstep” plot (sometimes appropriate, sometimes not).

Many MATLAB functions are “overloaded” and apply to both types of systems. I’m slowly revising
these notes, and I’ll try to show examples during class.

2.9 Table of Z-Transforms

The short table below lists some z-transforms. F(s) is the Laplace transform of f(t) and F (z) is
the z-transform of f(kT ).

Number F(s) f(kT ) F (z)

1 1
s 1(kT ) z

z−1

2 1
s2 kT Tz

(z−1)2

3 1
s+a e−akT z

z−e−aT

4 1
(s+a)2 kTe−akT Tze−aT

(z−e−aT )2

5 a
s(s+a) 1− e−akT z(1−e−aT )

(z−1)(z−e−aT )

6 a
s2+a2 sin akT z sin aT

z2−(2 cos aT )z+1

7 s
s2+a2 cos akT z(z−cos aT )

z2−(2 cos aT )z+1

8 s+a
(s+a)2+b2 e−akT cos bkT z(z−e−aT cos bT )

z2−2e−aT (cos bT )z+e−2aT

9 b
(s+a)2+b2 e−akT sin bkT ze−aT sin bT

z2−2e−aT (cos bT )z+e−2aT

10 a2+b2

s((s+a)2+b2) 1− e−akT
(
cos bkT + a

b sin bkT
) z(Az+B)

(z−1)(z2−2e−aT (cos bT )z+e−2aT )

A = 1− e−aT cos bT − a
b e
−aT sin bT

B = e−2aT + a
b e
−aT sin bT − e−aT cos bT
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Homework Problems

Problem 1.

Given the difference equation

yk = 0.5yk−1 + 0.5yk−2 + 0.25uk−1

(a) Find the discrete transfer function H(z) = Y (z)
U(z) .

(b) Draw a block diagram of this discrete system.

(c) Reduce the block diagram to obtain a transfer function and verify with (a).

Problem 2.

(a) Derive the difference equation corresponding to the approximation of integration found by
fitting a parabola ê(t) = a0 + a1t+ a2t

2 to the points ek−2, ek−1, ek and taking the area under
this parabola ê(t) between t = kT − T and t = kT as the approximation to the integral of
e(t) over this range. (Hint: In solving for coefficients a0, a1, a2 pick samples such that t = 0 is
included, i.e. e−2, e−1, e0, or e−1, e0, e1. This will greatly simplify the algebra.

(b) Find the transfer function of the resulting discrete system and plot the poles and zeros in the
z-plane.

(c) Test the accuracy of this “parabolic rule” integrator by integrating the sine function e(t) = sin 2πt
over the first half cycle. Use six time steps, k = 0. . .5; thus T = 0.1. Perform this integration
using:

i. Parabolic rule

ii. Trapezoidal rule

iii. Exact integration

Compare the three results. Is anything surprising?

Problem 3.

The standard form of the continuous-domain transfer function for an underdamped system is

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

which has pole locations at s = −ζωn ± jωn
√

1− ζ2. Given corresponding z-plane complex poles
at z = a± jb, find the equivalent damping ratio ζ and natural frequency ωn of these discrete system
poles in terms of a, b, and sampling period T .
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Problem 4.

For the discrete transfer function G(z) below:

G(z) =
1

z2 − 0.5z + 0.5

(a) Find and plot the unit pulse response.

(b) Find and plot the unit step response. Also verify the DC gain using the method of Section 2.7.

(c) Find and plot the response to a sine input of 0.5 Hz. Assume a sample period T = 0.2 seconds.
Verify the amplitude ratio and phase shift with that computed analytically using the frequency
response method of Section 2.6. (Hint: You should use MATLAB to do this one, there are too
many samples to compute by hand, since you must simulate it until the response reaches steady
state).



Chapter 3

Discrete Simulation of Continuous
Systems

Finding a discrete system which simulates the behavior of a given continuous system is important in
discrete-domain control system design, since the (continuous) plant’s response to a discretized input
must be known before a controller can be designed for that plant.

However, the study of discrete simulations of continuous systems is important in its own right,
because we often have a known H(s) which we wish to realize using a computer, hence we must
find a discrete system H(z) which yields the same behavior. All dynamic systems H(s) may be
considered filters, hence the subject matter of this chapter is sometimes called digital filtering.

3.1 Chapter Overview

Linear filters may be described by their frequency behavior, i.e. their amplitude and phase charac-
teristics vs frequency. In this chapter we will often judge the accuracy of our discrete simulations by
comparing their frequency characteristics to the frequency characteristics of the original continuous
system. Some types of filters are

• Radio receiver filter—bandpass

• Power line noise filter—bandstop

• Audio applications—equalizer

• Control system filters—compensators

These are all fundamentally similar, they have certain amplitude ratio and phase shift vs frequency.
Continuous filter design is an established area. We will assume the continuous filter is known, and
pose the problem

35
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Given H(s), what H(z) will have approximately the same characteristics?

We will look at two approaches. . .

1. Numerical Integration.

2. Pole-Zero Mapping.

3.2 Discrete Simulation using Numerical Integration

You have probably used numerical integration to solve differential equations. We are doing the same
thing here, except we are going to use the result in real time. By the way, trying to define what
“real-time” means has resulted in endless arguments. For the purposes of this class, “real time” will
mean “keeping up with the hardware.” Controlling a physical process will require sampling at a
desired rate. Our digital controller must be able to generate outputs at this rate. Typically, need
for real-time behavior precludes the use of “batch” or multi-user computer operating systems (like
Unix), since they do not guarantee any minimum response or sampling time. One of the figures of
merit of a real-time operating system (of which there are many, e.g. VxWorks, LynxOS (not Linux!),
MATLAB Real-Time Workshop) is its interrupt latency, which defines how fast the computer can
respond to an external event, such as the need of the controlled process for an input. Interrupt
latencies of competitive real-time OS’s are well under 10 µsec.

In using numerical integration to obtain a real-time discrete equivalent of a continuous system, we
do the following:

H(s)

⇓
Differential Equation

⇓
Integrate Numerically

⇓
H(z)

Given the need for fast response, we typically use simple numerical integration algorithms. . . you
won’t see any 4th − 5th order Runge-Kutta methods here! The process is best illustrated by an
example:

Example

Given the first-order system

H(s) =
U(s)

E(s)
=

a

s+ a
(3.1)
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we can cross-multiply to get

sU(s) + aU(s) = aE(s)⇒ u̇(t) + au(t) = ae(t) (3.2)

hence
u̇(t) = −au(t) + ae(t) (3.3)

We can therefore integrate u̇ to obtain u,

u(t) =

∫ t

0

[−au(τ) + ae(τ)]dτ (3.4)

where the dummy time variable τ is used as the integrand to avoid confusion with time variable t,
the upper limit on the integration.

In discrete time, we can express this integral in two parts. . . the integral from t = 0 to the previous
sample time t = kT − T , and the integral from t = kT − T to the current sample time t = kT , or

u(kT ) =

∫ kT−T

0

(−au+ ae)dτ +

∫ kT

kT−T
(−au+ ae)dτ

= u(kT − T ) + [Area of − au+ ae over kT − T ≤ τ ≤ kT ] (3.5)

This area may be approximated with many numerical rules, we will show four:

• Forward rectangular

• Backward rectangular

• Trapezoidal

• Prewarped trapezoidal

3.2.1 Forward rectangular rule (Euler’s rule)

The integration to be performed is shown in Figure 3.1, where the function g(τ) to be integrated
is g(τ) = −au(τ) + ae(τ) for the previous example. With the forward rule we project the value of
the function g at the previous sample “forward” to the current sample, then take the area A of the
resulting rectangle. Thus for our example function

u(kT ) = u(kT − T ) + [−au(kT − T ) + ae(kT − T )]T

= (1− aT )u(kT − T ) + aTe(kT − T ) (3.6)

From 3.6 we can find a transfer by knowing that discrete variable u(kT ) has z-transform U(z), and
that a delay of one sample corresponds to multiplication by z−1. Thus

U(z) = (1− aT )z−1U(z) + aTz−1E(z) (3.7)

or
zU(z) = (1− aT )U(z) + aTE(z) (3.8)

yielding discrete transfer function

U(z)

E(z)
= H(z) =

aT

z − (1− aT )
=

a

( z−1
T ) + a

(3.9)
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g(t)

t
kT − T kT

Figure 3.1: Forward integration rule.

3.2.2 Backward rectangular rule

The integration to be performed is shown in Figure 3.2, where the function g(τ) to be integrated is
again g(τ) = −au(τ) + ae(τ). With the backward rule we project the value of the function g at the
current sample “back” to the previous sample, then take the area A of the resulting rectangle. Thus
for our example function

u(kT ) = u(kT − T ) + [−au(kT ) + ae(kT )]T

u(kT )(1 + aT ) = u(kT − T ) + aTe(kT ) (3.10)

From (3.10) we can again find a transfer function as in Section 3.2.1. Thus

U(z)(1 + aT ) = z−1U(z) + aTE(z) (3.11)

or
U(z)(z + aTz) = U(z) + aTzE(z) (3.12)

thus
U(z)(z + aTz − 1) = aTzE(z) (3.13)

yielding discrete transfer function

U(z)

E(z)
= H(z) =

aTz

z − 1 + aTz
=

a

( z−1
Tz ) + a

(3.14)

3.2.3 Trapezoidal rule

This integration rule, sometimes called the Bilinear Transformation or Tustin Approximation, is
shown in Figure 3.3, where the function g(τ) to be integrated is still
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g(t)

t
kT − T kT

Figure 3.2: Backward integration rule.

g(τ) = −au(τ) + ae(τ)

With the trapezoidal rule we connect the current sample to the previous sample with a straight line,
then take the area A of the resulting trapezoid. This may be thought of as an average of the forward
rectangle and the backward rectangle. For our example function

u(kT ) = u(kT − T ) +
T

2
[−au(kT − T ) + ae(kT − T )− au(kT ) + ae(kT )] (3.15)

From (3.15) we can again find a transfer function,

U(z) = z−1U(z) +
T

2

[
−az−1U(z) + az−1E(z)− aU(z) + aE(z)

]
(3.16)

and after some algebra we obtain discrete transfer function

U(z)

E(z)
= H(z) =

aT2 (z + 1)

z − 1 + aT2 (z + 1)
=

a(
2
T
z−1
z+1

)
+ a

(3.17)

Comparison of the Integration Rules

Comparing the original H(s) =
a

s+ a
with the three discrete equivalents H(z), an approximation

for s results:
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g(t)

t
kT − T kT

Figure 3.3: Trapezoidal integration rule.

Method Approximation

Forward Rectangular s ≈ z − 1

T

Backward Rectangular s ≈ z − 1

Tz

Trapezoidal Rule s ≈ 2

T

z − 1

z + 1

Each of these approximations may be viewed as a mapping from the s-plane to the z-plane.

It is instructive to see where in the z-plane these approximations transform the left-half s-plane (the
region of stable poles). To this end, solve for the inverse mapping, thus

Method Inverse Mapping

Forward Rectangular z = 1 + Ts

Backward Rectangular z =
1

1− Ts

Trapezoidal Rule z =
1 + Ts/2

1− Ts/2

then we let s = jω, which is the boundary at the left-half s-plane. It can be shown that the s-plane
jω axis maps into the following z-plane contours:
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Method Equivalent s = jω contour in z-plane

Forward Rectangular Vertical line at z = 1

Backward Rectangular Circle of radius 1
2 centered at z = 1

2

Trapezoidal Rule Unit circle (although entire +jω axis is stuffed
into π of unit circle. . . much distortion!)

The left-half s-plane mapped into the z-plane with these approximations is shown in Figure 3.4.

Real

Imag Imag Imag

Real Real

Forward Backward Trapezoidal

Figure 3.4: Left-half s-plane mapped into z-plane.

Comments

Note that with the forward rectangular rule there is the potential for a stable continuous system (all
poles in left-half s-plane) resulting in an unstable discrete approximation.

Even though the trapezoidal rule maps the s-plane stability boundary into the z-plane stability
boundary, there is still distortion, as indicated in the table. This distortion inherent in the trape-
zoidal rule (there is even more distortion in the forward & backward rules) can be corrected exactly
at one and only one frequency. This lead to the fourth integration rule.

3.2.4 Prewarped trapezoidal rule

This rule, a variation of the trapezoidal rule, corrects the frequency distortion at a given frequency.
Start with the trapezoidal approximation,

s ≈ 2

T

z − 1

z + 1
(3.18)
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and consider a particular frequency ωo, thus s = jωo. The exact mapping of this pole is

z = eTs = ejωoT . (3.19)

Now take the bilinear transformation

s = A
z − 1

z + 1
. (3.20)

We are going to solve for A to obtain this exact frequency response. We do this by equating the
actual s-plane pole location with the mapping of equation (3.20). Thus

jωo = A
ejωoT − 1

ejωoT + 1
= A

ejωoT/2 − e−jωoT/2

ejωoT/2 + e−jωoT/2

= jA
sin ωoT

2

cos ωoT2
= jA tan

woT

2
(3.21)

or

A =
ωo

tan ωoT
2

(3.22)

Note that when ωoT is small, parameter A ≈ 2/T , which is the same as the trapezoidal rule. The
condition of small ωoT means the sampling frequency is fast compared to frequency ωo, and there
is not much distortion in the first place.

Given prewarping frequency wo, calculate A using equation (3.22), then equation (3.20) yields the
substitution to use in finding the discrete simulation.

Example

All four integration rules will be used in discrete simulations of continuous filter

H(s) =
10

s+ 10
(3.23)

which is a first-order low-pass filter with a cutoff frequency of 10 rad/second. Recall that the cutoff
frequency is where amplitude ratio or magnitude is -3.01 db down from the low-frequency value, or
a factor of 0.7071 below the low-frequency value. The magnitude and angle of H(s) at the cutoff
frequency are found by evaluating H(s) at s = jω = j10:

|H(jω)| = |H(j10)| =
∣∣∣∣ 10

j10 + 10

∣∣∣∣ = 0.7071 = −3.01db. (3.24)

6 H(jω) = 6 H(j10) = 6
10

j10 + 10
= −45o. (3.25)

We will select a sampling frequency of fs− 20 Hz, thus T = 0.05 seconds.
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1. Forward rectangular rule. Here

s =
z − 1

T
= 20(z − 1)

and

HF (z) =
10

20z − 20 + 10
=

0.5

z − 0.5
(3.26)

This simulation has no zeros, a pole at z = 0.5, and a dc gain of 1. To find the magnitude and
angle at 10 rad/second, let

z = ejωT = ej(10)(0.05) = ej0.5 = cos 0.5 + j sin 0.5 = 0.878 + j0.479 (3.27)

and

HF =
0.5

0.378 + j0.479

|HF | = 0.819 = −1.73db

6 HF = −51.721o

2. Backward rectangular rule. Here

s =
z − 1

Tz
= 20

(
z − 1

z

)
and

HB(z) =
10z

20z − 20 + 10z
=

0.33z

z − 0.67
(3.28)

This simulation has a zero at z = 0, a pole at z = 0.67, and a dc gain of 1. Again using
z = 0.878 + j0.479, we find

HB =
0.290 + j0.158

0.208 + j0.479

|HB | = 0.632 = −3.98db

6 HB = −37.945o

3. Trapezoidal rule. Here

s =
2

t

z − 1

z + 1
= 40

z − 1

z + 1

and

HT (z) =
10(z + 1)

40z − 40 + 10z + 10
=

0.2(z + 1)

z − 0.6
(3.29)

This simulation has a zero at z = −1, a pole at z = 0.6, and a dc gain of 1. Once again using
z = 0.878 + j0.479, we find

HT =
0.376 + j0.096

0.278 + j0.479

|HT | = 0.701 = −3.089db

6 HT = −45.547o
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4. Prewarped (at ω = 10) trapezoidal rule. Here

A =
ω

tan ωT
2

= 39.16

and so

s = A
z − 1

z + 1
= 39.16

z − 1

z + 1

therefore

HP (z) =
10(z + 1)

39.16z − 39.16 + 10z + 10
=

0.203(z + 1)

z − 0.5932
(3.30)

This simulation has a zero at z = −1, a pole at z = 0.5932, and a dc gain of 1. Letting
z = 0.878 + j0.479, we find

HP =
0.381 + j0.097

0.284 + j0.479

|HP | = 0.707 = −3.01db

6 HP = −45o

The frequency response of the prewarped simulation is exact at ω = 10.

Note that the trapezoidal method gives generally better results than either rectangular method,
which is to be expected. The prewarped trapezoidal is naturally exact at the prewarping frequency,
but may not be as good over other frequencies. Bode plots of magnitude and angle of all these
simulations, plus the original continuous system will be given after the last two simulations methods
are presented.

3.3 Pole-Zero Mapping

The pole-zero mapping method is probably the easiest method to apply, although most of these
simulations can be performed using MATLAB, as we will show later in this chapter. Discrete simulation
using pole-zero mapping is done by:

1. Map poles of H(s) to poles of H(z) using z = esT .

2. Map finite zeros (if any) of H(s) to zeros of H(z) using z = esT .

3. Map zeros at infinity (recall that H(s) always has an equal number of poles and zeros, with
perhaps some zeros at ∞) to z = −1.

4. Set the dc gain of H(z) equal to that of H(s).
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Example

For the previous H(s) of

H(s) =
10

s+ 10

with T = 0.05 we have

1. The pole maps as z = e(−10)(0.05) = 0.6065.

2. No finite zeros.

3. One zero at z = −1.

4. Adjust numerator K as necessary.

and we get

HPZ(z) =
K(z + 1)

z − 0.6065
=

0.1967(z + 1)

z − 0.6065
(3.31)

This simulation has a zero at z = −1, a pole at z = 0.6065, and a dc gain (obviously) of 1. Checking
the frequency response as before, with z = 0.878 + j0.479, we find

HPZ =
0.369 + j0.094

0.271 + j0.479

|HPZ | = 0.692 = −3.2db

6 HPZ = −46.21o

Although one can draw no real conclusions, for this example, at this one frequency, the PZ mapping
simulation was more accurate than the rectangular integration rules, but less accurate than the
trapezoidal and prewarped rules.

3.4 Comparison of Simulations

All of the simulations will be compared by plotting their amplitude ratios and phase angles vs
frequency. . . a Bode plot. As we saw in Chapter 2, the mapping between the s-plane and the z-plane
breaks down (actually it becomes non-unique) as s → jπ/T , or s → jωs/2, one half the sampling
frequency. For this reason we would expect the frequency response of these discrete simulations to
degrade as we approach one-half the sampling frequency.

Bode plots of the original continuous system, and Forward, Backward, Trapezoidal, Prewarped, and
PZ mapping discrete simulations are shown in Figure 3.5.

Although it is somewhat difficult to see in Figure 3.5, the forward and backward methods are
definitely the worst, one is too high in magnitude, the other too low. The trapezoidal, prewarped,
and pole-zero mapping simulations are all quite similar.
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Figure 3.5: Bode magnitude plots.

Note that all methods behave very poorly as the frequency approaches one-half the sampling fre-
quency, or ω = 2πf ≈ 63 rad/sec. The angle plots are shown in Figure 3.6. The trapezoidal,
prewarped, and pole-zero mapping simulations are the best here as well, with all methods breaking
down as frequency gets near ωs/2.

3.5 Using MATLAB in Discrete Simulation

The MATLAB numerical analysis package can be used in finding discrete simulations of continuous
systems. Following is a description of the c2d function:
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Figure 3.6: Bode angle plots.

C2D Conversion of continuous-time models to discrete time.

SYSD = C2D(SYSC,Ts,METHOD) converts the continuous-time LTI

model SYSC to a discrete-time model SYSD with sample time Ts.

The string METHOD selects the discretization method among the

following:

’zoh’ Zero-order hold on the inputs

’foh’ Linear interpolation of inputs (triangle appx.)

’imp’ Impulse-invariant discretization

’tustin’ Bilinear (Tustin) approximation

’prewarp’ Tustin approximation with frequency prewarping.

The critical frequency Wc (in rad/sec) is specified

as fourth input by

SYSD = C2D(SYSC,Ts,’prewarp’,Wc)

’matched’ Matched pole-zero method (for SISO systems only).

The default is ’zoh’ when METHOD is omitted.

The simulations methods that MATLAB supports that we have covered in this chapter are:

• tustin—trapezoidal (Tustin) integration rule

• prewarp—prewarped trapezoidal integration rule

• matched—pole-zero mapping
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The rectangular integration rules are not supported in MATLAB, they are not good performers anyway.
The zoh simulation method is one we will examine in Chapter 4, I have chosen to omit it in this
chapter. NOTE: MATLAB function c2d works with an “LTI system,” not the numerator and
denominator. A “transfer function” LTI system can be created using the TF function—this will be
done below (function c2dm still works with num and den, but c2d is preferred).

Example

Simulate the H(s) covered in the previous example using MATLAB. Recall that

H(s) =
10

s+ 10
(3.32)

1. Trapezoidal rule. The MATLAB script is shown below:

>> numc = [0 10]; % Define continuous numerator

>> denc = [1 10]; % Define continuous denominator

>> sysc = tf(numc,denc); % Create continuous LTI system

>> T = 0.05; % Define sampling period

>> sysd = c2d(sysc,T,’tustin’); % Discretize using trapezoidal approximation

>> sysd % Display the resulting discrete LTI system

Transfer function:

0.2 z + 0.2

-----------

z - 0.6

Sampling time: 0.05

2. Prewarped rule. The MATLAB script is shown below (the same continuous numerator and
denominator are used as before):

>>wp = 10; % Prewarping frequency of 10 rad/sec

>> sysp = c2d(sysc,T,’prewarp’,wp); % Discretize using prewarped

>> sysp % Display the resulting discrete LTI system

Transfer function:

0.2034 z + 0.2034

-----------------

z - 0.5932

Sampling time: 0.05
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3. Pole-zero mapping :

>> syspz = c2d(sysc,T,’matched’); % Discretize using pole-zero mapping

>> syspz % Display resulting discrete system

Transfer function:

0.3935

----------

z - 0.6065

Sampling time: 0.05

3.5.1 Finding transfer function from LTI system

Sometimes you may need to extract the numerator and denominator from the LTI description of
the system. Using the “pole-zero mapping” result obtained above, here’s how to use tfdata:

>> [numpz,denpz] = tfdata(syspz,’v’)

numpz =

0 0.3935

denpz =

1.0000 -0.6065

NOTE: Don’t forget the ’v’ or you’ll be in for grief!

3.6 Implementation of Difference Equations in Real Time

It is time to consider how to construct computer programs that will realize the difference equations
we obtain. Consider a general second-order discrete transfer function, written in z−1:

H(z) =
Y (z)

U(z)
=
b0 + b1z

−1 + b2z
−2

1− a1z−1 − a2z−2
(3.33)

with corresponding difference equation

yk = a1yk−1 + a2yk−2 + b0uk + b1uk−1 + b2uk−2 (3.34)

We assume that in addition to A/D and D/A converters (and subroutines to use them) the computer
has a programmable real time clock such that a clock interrupt will occur every T seconds, where T
may be set under program control. When a clock interrupt occurs, variable FLAG is set to one.
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3.6.1 Direct realization

Consider the following program structure:

10 read difference equation parameters and initialize variables;

20 set FLAG = 0;

30 select sample period, start clock;

40 if (FLAG == 1) print ("sampling period too short") and exit;

50 while (FLAG == 0) wait;

60 u(0) = adc_in(); % Read input u(k).

70 y(0) = a1*y(1) + a2*y(2) + b0*u(0) + b1*u(1) + b2*u(2); % compute y(k).

80 dac_out(y(0)); % Write output y(k) to D/A converter.

90 u(2) = u(1); % Propagate variables

100 u(1) = u(0); % backwards

110 y(2) = y(1); % for next

120 y(1) = y(0); % sample.

130 goto 40; % Execute continuously.

In the structure above the difference equation is explicitly calculated in line 70. While this approach
is easy to follow, it is inefficient. The problem is the computational delay between the acquisition of
the input sample in line 60 and the writing of the output sample in line 80. There are 5 multiplies,
4 adds, and 1 assignment. Note that this computational delay is not the sampling period, and it is
a delay which we have not modeled. Thus it should be minimized.

Also note the possibility of clock overrun in line 40. If variable FLAG has already been set by the
time we get back to the top of the loop, we are sampling too fast; the time allotted for the control
computation is too short. Either we sample slower, reduce the complexity of the control calculation,
or get a faster computer.

3.6.2 Canonical realization

Consider the block diagram shown in Figure 3.7. Input u and output y are present, as are parameters
ak and bk. State variables x1 and x2 are new. While the general topic of state variable formulation
will be deferred until later in the course, it is necessary to illustrate a more efficient real time
implementation. Note that the state variables are the outputs of the delay elements. . . this will
always be the case.

One should first verify that Figure 3.7 implements the difference equation of (3.34), this is left as an
exercise for the student. A progam based on this block diagram is



3.6. IMPLEMENTATION OF DIFFERENCE EQUATIONS IN REAL TIME 51

uk

yk

b2 b1 b0

a2 a1

z−1
z−1

+

+

+

+ +

+

+

x1x2

Figure 3.7: Observer canonical block diagram realization.

10 read difference equation parameters and initialize variables;

20 set FLAG = 0;

30 select sample period, start clock;

40 if (FLAG == 1) print ("sampling period too short") and exit;

50 while (FLAG == 0) wait;

60 u = adc_in();

70 y = x1 + b0*u;

80 dac_out(y);

90 x1 = x2 + b1*u + a1*y;

100 x2 = b2*u + a2*y;

130 goto 40;

Although the program loop is shorter overall, note particularly that the computational delay between
line 60 and line 80 is now 1 multiply, 1 add, and 1 assignment. There is more computation after
writing the output, but it’s not as critical there.
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Homework Problems

Problem 1.

The following transfer function is a lead network designed to add about 60o phase lead at ω1 = 3
rad/sec:

H(s) =
s+ 1

0.1s+ 1
= 10

s+ 1

s+ 10

(a) For each of the following simulation methods compute and plot in the z-plane the pole and
zero locations and compute the amount of phase lead given by the network at z1 = ejω1T . Let
T = 0.25 sec.

(i) Forward rectangular rule.

(ii) Backward rectangular rule.

(iii) Trapezoidal rule.

(iv) Prewarped trapezoidal rule (use ω1 as the prewarping frequency).

(v) Pole-zero mapping.

(b) Plot the amplitude Bode plots of the continuous system and all simulations over the frequency
range 0.1 ≤ ω ≤ 100 rad/sec.

(c) Develop a substitution rule based on the “parabolic” integration rule of Chapter 2 Problem 2.
Use this rule to obtain a discrete simulation of the H(s) and compare the frequency response
with the other methods.

Problem 2.

For this problem, construct the continuous transfer function G(s) of a second-order system with
damping ratio ζ = 0.2 and natural frequency ωn = 50 rad/sec, no zeros, and a dc gain of 1.

(a) Let the sampling frequency be 100 Hz. Find the following discrete simulations of G(s):

(i) Trapezoidal.

(ii) Prewarped (use ωn as the prewarping frequency).

(iii) Pole-zero mapping.

(b) Compare the Bode plots (both magnitude and phase plots) of the continuous G(s) and all
G(z). Use frequency range 0.1 ≤ f ≤ 100 Hz.

(c) Compare the unit step response of the G(s) and any G(z).
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Problem 3.

A notch filter is often useful in reducing the effect of an unwanted signal at a known constant
frequency, such as power line noise. The transfer function of a second-order notch filter is given by

H(s) =
Y (s)

U(s)
=

s2 + ω2
o

s2 + 2ζωos+ w2
o

where ζ =
√

2/2 and ωo = notch frequency.

(a) Design a 60-Hz continuous notch filter H(s).

(b) Using a sampling frequency of 500 Hz, find the prewarped discrete simulation H(z) using the
notch frequency as the prewarped frequency.

(c) Draw Bode magnitude plots of H(s) and H(z) over 1 ≤ f ≤ 1000 Hz.

(d) Plot the time response of H(z) to an input which is the sum of an 11 Hz. sine wave and a 60
Hz. sine wave, i.e.

u(t) = sin 2πf1t+ sin 2πf2t = sin 2π(11)t+ sin 2π(60)t

Show both input u(t) and output y(t) on your plot. Make sure H(z) has reached steady state
on your plot. Note the “start-up” transient.

(e) Draw a block diagram for H(z) in the observer canonical format of Figure 3.7. Assign state
variables xi and write a program in “pseudo-code” to realize this filter. What must the
excecution time of an arithmetic instruction be to implement this filter at a sampling rate of
500 Hz? Assume equal time for multiply and add, and neglect assignments. Is this within the
capabilities of an “average” computer?
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Chapter 4

Sampled Data Systems

4.1 Introduction

In Chapter 2 we dealt with discrete systems only, covering difference equations and the z transform.
Chapter 3 we did examine finding discrete simulations of continuous systems, but we did so from a
discrete perspective. In digital control systems where there are both discrete (the control algorithm)
and continuous components (the plant), with a loop closure, it is imperative that we study the
interaction between discrete and continuous components with a more rigorous examination of the
effect of sampling. In comparison to Chapter 3, now we will work primarily in the continuous time
domain and use the Laplace transform.

4.2 The Sampling Process as Impulse Modulation

Consider a continuous signal which is sampled, as shown below, in which continuous signal r(t) is

A/D

T

r(t) r* (t)

sampled to produce a discrete signal which we will designate r∗(t). Note that this notation is a
significant departure from our previous treatment. Before, we have labeled the sampled signal rk, a
discrete variable. However, now we are claiming that the sampled signal can be called r∗(t), which
implies we have a way of modeling this sampled signal in the time domain. We will obtain this time
domain model of a sampled signal using impulse modulation.

The sampled signal may be represented as the continuous signal convolved with a sequence of unit
impulses at the sample instants, which will result in the string of weighted impulses

r∗(t) = δ(t)r(0) + δ(t− T )r(T ) + δ(t− 2T )r(2T ) + . . . (4.1)

55
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t t t

r(t)

0    T    2T    3T  4T   5T 0    T    2T    3T  4T   5T

* =

δ t − kT( )
k =0

∞

∑

Figure 4.1: Convolution of continuous signal with impulse train.

thus

r∗(t) =
∞∑
k=0

r(t)δ(t− kT )

=

∞∑
k=0

r(kT )δ(t− kT ) (4.2)

since the impulse train δ(t − kT ) zeros out function r(t) except at the sample instants kT . This
convolution of continuous time function with impulse train is shown in Figure 4.1.

Using the definition of r∗(t) in equation (4.2), r∗(t) is defined for all time, since the impulse function
δ(t) is defined over all time. We are going to apply the Laplace transform to equation (4.2), and in
preparation for this, recall the “sieve” property of the impulse function. . .∫ ∞

0

f(t)δ(t− a)dt = f(a) (4.3)

where the δ(t − a) function results in only the value of f(a) appearing in the integral result. This
can be applied to the Laplace transform of δ(t), with the well-known result

L[δ(t)] =

∫ ∞
0

δ(t)e−stdt = 1 (4.4)

Now take the Laplace transform of r∗(t) as given by equation (4.2). We have

R∗(s) = L

{ ∞∑
k=0

r(kT )δ(t− kT )

}

=

∞∑
k=0

r(kT )

∫ ∞
0

δ(t− kT )e−stdt

=

∞∑
k=0

r(kT )L{δ(t− kT )}

R∗(s) =

∞∑
k=0

r(kT )e−kTs (4.5)
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A/D D/A

sampler zero-order
hold

T
r(t) r* (t)

H0 (s)
rh(t)

Figure 4.2: Sampler and zero-order hold.

Comparing equation (4.5) to the definition of the z-transform Z{rk} in Chapter 2, we get the
pleasing result

R∗(s) = R(z)|z=eTs (4.6)

which states that the Laplace transform of the time function obtained by convolving r(t) with
impulse train δ(t−kT ) is equal to the z transform of the discrete sequence r(kT ) = r(k) = rk, when
the substitution z = eTs is made. This is mathematical justification of the use of the impulse train
to obtain a time function from the discrete sequence.

Example

Consider the use of the impulse model of sampling in finding the transfer function of a D/A converter
(zero-order hold, or ZOH), shown in Figure 4.2. The D/A behaves like a ZOH, and holds the sample
constant until a new sample is received, i.e.

1. Sample obtained from A/D

2. Result held fixed for one period by D/A

The response of the ZOH to a unit impulse at t = 0 is shown below, The output can be represented

t t

1

0 0

-1

=

T

T

1

as a unit step at t = 0 followed by a step of magnitude -1 occurring at t = T , as shown. The Laplace
transform of the output can be written

Output(s) =
1

s
− e−Ts

s
=

1− e−Ts

s
. (4.7)
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Since the input has Laplace transform of 1 (unit impulse), the ratio of the Laplace transform of the
output over that of the input yields the transfer function of the zero-order hold, which is

Ho(s) =
1− e−sT

s
(4.8)

We will use the transfer function of the ZOH, or D/A, given by equation (4.8) extensively in modeling
sampled data systems.

4.3 Frequency Spectra of Sampled Signals—Aliasing

We have a method of mathematically representing continuous functions r(t) which have been sampled—
this is the impulse sampling model given by equation (4.2). The question posed in this section
is—what is the frequency spectrum of sampled signal r∗(t)? We will first find a Fourier series rep-
resentation of the impulse train, use this in the expression for r∗(t), take the Laplace transform of
r∗(t), which is R∗(s), then use the fact that R∗(jω) = R∗(s)|s=jω.

4.3.1 Fourier transform and Fourier series

The Fourier transform and Fourier series will be necessary in the derivation to follow, we state them
below, first the Fourier transform:

F (jω) =

∫ ∞
−∞

f(t)e−jωtdt (4.9)

then the Fourier series (only applicable if f(t) is periodic):

f(t) =

∞∑
n=−∞

Cne
j(2πn/T )t (4.10)

where the Fourier coefficients are given by

Cn =
1

T

∫ T
2

−T2
f(t)e−j(2πn/T )tdt (4.11)

In (4.10) and (4.11) T is the period of f(t). The double-sided expressions are given here, since the
mathematics is more straightforward than if single-sided were used.

Now, since the complete impulse train

∞∑
k=−∞

δ(t− kT )



4.3. FREQUENCY SPECTRA OF SAMPLED SIGNALS—ALIASING 59

is periodic with period T , it can be represented by a Fourier Series;

∞∑
k=−∞

δ(t− kT ) =

∞∑
n=−∞

Cne
j(2πn/T )t (4.12)

where the Fourier coefficients are given by

Cn =
1

T

∫ T
2

−T2

∞∑
k=−∞

δ(t− kT )e−j(2πn/T )t. (4.13)

Although equation (4.13) looks formidable, the “sieving” property of the impulse function (and the
only impulse within the integration limits is at t = 0) yields a very simple result,

Cn =
1

T

[
e−j(2πn/T )(0)

]
=

1

T
(4.14)

Substituting the Fourier coefficients Cn from equation (4.14) into the Fourier series of (4.12), so

∞∑
k=−∞

δ(t− kT ) =

∞∑
n=−∞

1

T
ej(2πn/T )t

=
1

T

∞∑
n=−∞

ejnωst (4.15)

where we have used the relation that sampling frequency ωs = 2π/T . Using the Fourier series
expression for the impulse train, we can express sampled signal r∗(t) as

r∗(t) =
1

T

{
r(t)

∞∑
n=−∞

ejnωst

}
(4.16)

The Laplace transform R∗(s) of sampled signal r∗(t) is

L[r∗(t)] =

∫ ∞
−∞

1

T

{
r(t)

∞∑
n=−∞

ejnωst

}
e−stdt

R∗(s) =
1

T

∞∑
n=−∞

∫ ∞
−∞

r(t)ejnωste−stdt

=
1

T

∞∑
n=−∞

∫ ∞
−∞

r(t)e−(s−jnωs)tdt

=
1

T

∞∑
n=−∞

R(s− jnωs) (4.17)
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If F (s) is the Laplace transform of f(t), the Fourier transform F (jω) is given by

F (jω) = F (s)|s=jω (4.18)

thus

R∗(jω) =
1

T

∞∑
n=−∞

R(jω − jnωs) (4.19)

Equation (4.19) is a momentous result, it tells us that two things happen to the frequency spectrum
of r(t) when it is sampled to become r∗(t):

1. The magnitude of the sampled spectrum is 1
T that of the continuous spectrum, it is scaled by

1
T .

2. The summation in (4.19) indicates that there are an infinite number of repeated spectra in the
sampled signal, and they are repeated every ωs = 2π/T along the frequency axis.

Two Examples of Sampled Spectra

We will examine the effects of sampling on the amplitude spectra of two continuous functions.

Example 1. Consider continuous function r1(t) which has no frequency content above half the
sampling frequency ωs/2. The original amplitude spectrum |R1(jω)| and the sampled spectrum
|R∗1(jω)| are shown in Figure 4.3(a). The spectrum of the sampled r∗1(t) is scaled by 1/T and
repeated, but one can see the possibility of reconstructing by extracting the original single spectrum
from the array of repeated spectra (Remember that all information present in r(t) is also present in
R(jω), the original spectrum).

Example 2. Now consider function r2(t) which has frequency content above half the sampling
frequency ωs/2. The same scaling and repetition occurs in the sampled spectrum, but this time
due to the addition of the overlapping spectra in Figure 4.3(b) there is no chance of recovering the
original spectrum after sampling.

Another phenomenon is shown in Figure 4.3(b), that of aliasing, illustrated at the frequency marked
ωo. The magnitude of the overall spectrum at ωo is due to two different spectra, the “original”
spectrum R(jωo), and the repeated spectrum centered at ωs = 2π/T . The value of the magnitude
from the repeated spectrum is R(jωa), where ωa = ωo − ωs. This frequency, ωa, which shows up at
ωo after sampling, is called an alias of ωo.

Aliasing means that two different sinusoids have identical samples, and we cannot distinguish between
them from their samples. When experimental data are to be sampled, it is essential that an “anti-
aliasing” analog filter be used before sampling to filter out frequencies above one-half the sampling
frequency (called the Nyquist frequency). Otherwise, frequencies above the Nyquist frequency in
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(a) Non-overlapping spectra.
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(b) Overlapping spectra showing contamination.

Figure 4.3: Frequency spectra of two signals.

the continuous signal will erroneously appear as lower frequencies after sampling. This is shown in
Figure 4.4, where fo = 7

8 Hz, and sampling frequency fs = 1 Hz. Then fo appears at

fa =
7

8
− 1 = −1

8
(4.20)

The significance of the negative frequency is that the 1
8 -Hz sinusoid in Figure 4.4 is the negative of

the original 7
8 -Hz sinusoid.

Another way of looking at aliasing is that the act of sampling causes a “reflecting” of frequencies
around the Nyquist frequency (fs/2); refer to the dashed lines in Figure 4.8 where fs = 500 Hz, and
a component at 100 Hz will also show up at 400 Hz, 600 Hz, 900 Hz, 1100 Hz, and so on.

Sampling Theorem

This can be viewed as:

What is the highest frequency we can allow in r(t) so that aliasing will not occur?

From inspection of Figure 4.3 it is clear that if R(jω) has components above ωs/2 or π/T , then
spectral overlap and aliasing will occur. The sampling theorem is

To recover a signal from its samples, you must sample at least twice the highest frequency
in the original signal. If R(jω) = 0 for ω ≥ ωs

2 , there will be no aliasing, and the original
signal may be recovered from R∗(jω), the Fourier transform of the samples (but not in
real time!).



62 CHAPTER 4. SAMPLED DATA SYSTEMS
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Figure 4.4: Plot of two sinusoids which have identical values at the
sampling intervals: an example of aliasing.

4.4 Desampling or Signal Reconstruction

This is the reverse operation of sampling. Given the samples, how can we reconstruct a continuous
signal? The samping theorem says that under the right conditions (no aliasing) it is possible to
recover the original signal from the samples, although I have indicated this is impossible in real
time. This section presents one method for such a reconstruction.

We will use an ideal filter. Consider recovering R(jω) from R∗(jω). This may be done by passing
R∗(jω) through an ideal low pass filter L(jω), with magnitude

|L(jω)| = T, − π
T
≤ ω ≤ π

T
(4.21)

|L(jω)| = 0, |ω| > π

T
(4.22)

The filter amplitude in equation (4.21) will pass the original spectrum, while that in equation (4.22)
will reject the repeated spectra. This is shown in Figure 4.5.

4.4.1 Impulse response of the Ideal Desampling Filter

The ideal sampling filter L(jω) can recover R(jω) from R∗(jω) using

R(jω) = L(jω)R∗(jω) (4.23)
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Figure 4.5: Use of ideal desampling filter.

If we take the inverse Fourier transform of L(jω) we will obtain the impulse response. The inverse
Fourier transform is given by

f(t) =
1

2π

∫ ∞
−∞

F (jω)ejωtdω (4.24)

and may be used to obtain a time function from a frequency function. Just like the Laplace transform,
the inverse Fourier transform of a transfer function yields the impulse response.

Since L(jω) is zero outside ±π/T , the filter’s impulse response is

l(t) =
1

2π

∫ π/T

−π/T
Tejωtdω

=
T

2π

ejωt

jt
|π/T−π/T

=
T

j2πt

(
ejπt/T − e−jπt/T

)
=

1

πt/T
sin

πt

T

= sinc
πt

T
(4.25)

A sketch of the sincπtT function is shown in Figure 4.6. Since this is the response due to an impulse
applied at t = 0, the ideal desampling filter is non-causal, because its response begins before it has
received the input. This means that we cannot apply the filter in real time.

Disregarding the real time problem at the moment, the ideal desampling filter would be used as
given by equation(4.23). Since multiplication in the transform domain is equivalent to convolution
in the time domain, the desampled time function r(t) is given by the convolution of r∗(t) with the
filter impulse response l(t),

r(t) =

∫ ∞
−∞

r∗(τ)l(t− τ)dτ (4.26)

Substituting the impulse train model for r∗(t) and l(t) from equation (4.25),

r(t) =

∫ ∞
−∞

r(τ)

∞∑
k=−∞

δ(t− kT )sinc
π(t− τ)

T
dτ (4.27)
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0
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1

Figure 4.6: Sinc function. . . impulse response of ideal desampling filter.

or, using the “sieving” property of the δ(t− a),

r(t) =

∞∑
k=−∞

r(kT )sinc
π(t− kT )

T
(4.28)

Equation (4.28) shows how to reconstruct the (band-limited. . . no aliasing!) function r(t) from its
samples r∗(t). The sinc() function fills in the gaps between samples.

4.4.2 The ZOH as a Desampling Filter

The ideal desampling filter, being non-causal, cannot be used in real time, so we will examine the
behavior of a zero-order hold, which is exactly the behavior of a D/A converter. Recall the transfer
function of a ZOH:

Ho(s) =
1− e−sT

s
(4.29)

The frequency behavior of Ho(s) is Ho(jω),

Ho(jω) =
1− e−jωT

jω
(4.30)

Multiplying numerator and denominator of (4.30) by ejωT/2, the magnitude of (4.30) is

|H(jω)| =

∣∣∣∣ejωT/2 − e−jωT/2jωejωT/2

∣∣∣∣
= T

∣∣∣∣ sinωT/2ωT/2

∣∣∣∣
= T

∣∣∣∣sinc
ωT

2

∣∣∣∣ (4.31)



4.4. DESAMPLING OR SIGNAL RECONSTRUCTION 65

ω

ω
ωs =

2π
T

2ωs

Ho

∠Ho

0

−180°

T

Figure 4.7: Frequency response of zero-order hold.

and the angle of (4.30) is

6 Ho(jω) = 6
ejωT/2 − e−jωT/2

jωejωT/2

= 6
2 sinωT/2

ωejωT/2

= −ωT
2

(4.32)

A plot of the frequency characteristics of the ZOH are shown in Figure 4.7. The ZOH is a low-
pass filter, at least an approximation of the ideal desampling filter, and has linear phase lag with
frequency. This phase lag can be viewed as the destabilizing effect of information loss at low sampling
frequencies. The DC magnitude of T of the ZOH compensates for the frequency scaling of 1/T
incurred by sampling.

Aliasing Lab Demonstration

The block diagram below shows a laboratory setup with an A/D converter, computer program which
passes the numbers “straight through,” and D/A converter (or ZOH) at the output. Variables
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r(t), r∗(t) represent the continuous and sampled inputs, while rh(t) is the desampled output. The
sampling frequency will be 500 Hz, or T = 0.002. A sinusoidal function generator will be used to

A/D Computer D/A

ZOH
T

r(t) r* (t)
1

r* (t) rh(t)

provide the input, so
r(t) = ro sinωt

and the frequency spectrum R(jω) will be a single line at ω. The frequency spectrum of rh(t) is

Rh(jω) = R∗(jω)Ho(jω)

with magnitude

|Rh(jω)| = 1

T

∞∑
n=−∞

|R(jω − jnωs)|T
∣∣∣∣sinc

ωT

2

∣∣∣∣
The process of sampling will cause the repeated spectra shown in Figure 4.3, but their magnitude
will be attenuated by the amplitude ratio of the ZOH shown in Figure 4.7.

The spectral amplitudes of the continuous input and the sampled and reconstructed output will be
displayed on a spectrum analyzer. The expected amplitudes at several frequencies are shown in the
accompanying table. Signals at these frequencies will be attenuated accordingly.

f (Hz) ω ωT/2 sinc(ωT/2) db

50 314 0.314 0.984 -0.14
100 628 0.628 0.936 -0.58
150 942 0.942 0.858 -1.33
200 1257 1.257 0.757 -2.42
300 1885 1.885 0.505 -5.94

The magnitude of the ZOH frequency response at a sampling frequency of 500 Hz is shown in the
plot. If the input is a sinusoid at 100 Hz, there will repeated spectra at 400, 600, 900, 1100. . . Hz.
The discrete spectral lines are shown as solid lines, while their attenuated versions (which are what
we actually see in Rh(jω) are shown by dashed lines.

4.5 Block Diagram Analysis

In this section methods to reduce block diagrams of sampled data systems will be covered. Unlike
continuous systems, sampled data systems contain samplers (A/D converters) and discrete elements
(computer programs). In terms of continuous component connections, there are really only two
possibilities:
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Figure 4.8: Repeated spectra and attenuation by ZOH.

1. Two continuous blocks with a sampler between them.

2. Two continuous blocks without a sampler between them.

4.5.1 Two blocks with a sampler between them

Consider the block diagram fragment shown below, with blocks G(s) and H(s) connected by a
sampler. Variables e(t), e∗(t), u(t), u∗(t), y(t), y∗(t), and their respective Laplace transforms E(s),
E∗(s), U(s), U∗(s), Y (s), Y ∗(s) are given. The continuous output Y (s) is given by

e( t) e*(t) u(t) u* (t) y(t) y* (t)

T T TG(s) H(s)
E(s) E*(s) U* (s) Y *(s)Y (s)U(s)

Y (s) = U∗(s)H(s) (4.33)

We propose to show that the sampled output Y ∗(s) is given by

Y ∗(s) = (U∗(s)H(s))
∗

= U∗(s)H∗(s) (4.34)

Using the frequency domain expression for the Laplace transform of a sampled signal given by
equation (4.19). Recall that in the frequency domain, the act of sampling scales the spectrum by
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1/T and causes infinite repeated duplicate spectra at ωs intervals. Hence Y ∗(s) is just Y (s) sampled,
or

Y ∗(s) = {U∗(s)H(s)}∗

=
1

T

∞∑
n=−∞

U∗(s− jnωs)H(s− jnωs) (4.35)

and

U∗(s) =
1

T

∞∑
k=−∞

U(s− jkωs) (4.36)

so

U∗(s− jnωs) =
1

T

∞∑
k=−∞

U(s− jkωs − jnωs) (4.37)

Let k = l − n, or k + n = l, then

U∗(s− jnωs) =
1

T

∞∑
l=−∞

U(s− jlωs)

= U∗(s) (4.38)

The spectrum of sampled variable U∗ can be shifted an integral number of periods ωs because its
spectrum is periodic with this “period.”

We can make use of this property in equation (4.35), substituting (4.38), so

Y ∗(s) =
1

T

∞∑
n=−∞

U∗(s− jnωs)H(s− jnωs)

= U∗(s)
1

T

∞∑
n=−∞

H(s− jnωs)

= U∗(s)H∗(s) (4.39)

The result we were after was Y ∗(s) = U∗(s)H∗(s). This could have also been applied to block G(s)
and input E∗(s) to yield

U∗(s) = E∗(s)G∗(s) (4.40)

Relations (4.39) and (4.40) can be combined to yield

Y ∗(s) = E∗(s)G∗(s)H∗(s) = E∗G∗H∗ (4.41)

The point in equation (4.41) is that blocks G and H “come apart,” we have G∗H∗, not (GH)∗. This
is due to the sampler between them.
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The “*” transform and z-transform It is worthwhile to distinguish the “*” transform and the
z-transform. Using equation (4.6) we can find the Y (z) from Y ∗(s) by

Y (z) = Y ∗(s)|esT=z (4.42)

It is important to understand the inverse of both Y ∗(s) and Y (z):

L−1 [U∗(s)] ⇒ sequence of impulses with intensities u(kT )

Z−1 [U(z)] ⇒ sequence of values uk (4.43)

In most of the transform-based design work to follow, we will use Y (z) rather than Y ∗(s) because
it is more concise.

4.5.2 Two blocks without a sampler between them

Without going into detail, using a similar derivation (but somewhat simpler) as above, it can be
shown that for the block connection below that Y ∗(s) 6= U∗(s)H∗(s), but rather

y(t) y* (t)

TH(s)
Y *(s)Y (s)

e( t) e*(t) u(t)

T G(s)
E(s) E*(s) U(s)

Y ∗(s) = {UH}∗(s) (4.44)

Likewise,
U(s) = E∗(s)G(s) (4.45)

Equations (4.44) and (4.45) can be combined to yield

Y ∗(s) = {E∗(s)G(s)H(s)}∗ = E∗(s){G(s)H(s)}∗ = E∗{GH}∗ (4.46)

Comparing (4.41) and (4.46) it can be seen that without a sampler between G and H they do not
“come apart.”

Block Diagram Reduction Procedure

In reducting block diagrams of sampled-data systems, the basic principle is

Solve for the variables which are sampled!

You will usually get simpler algebraic reduction. In most cases in this course we want transfer
functions relating sampled output to sampled input, rather than continuous variables. Now for
some examples. . .
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A/D Computer D/A (ZOH) Plant

r e e*

T

m* u y
D* (s)

1 − e−Ts

s
G(s)

+

-

Example 1

In the block diagram shown below, the error signal e(t) is sampled by the A/D converter, there
is a computer program modeled as discrete transfer function D∗(s) (note that it could have been,
and will soon be modeled as D(z)), D/A converter modeled as a ZOH, and finally a continuous
plant G(s). In every case the “*” notation signifies a sampled variable with the impulse modulation
sampling model.

The error signal is sampled, so start with that. . .

E(s) = R(s)− Y (s) (4.47)

M∗(s) = E∗(s)D∗(s) (4.48)

U(s) = M∗(s)

[
1− e−Ts

s

]
(4.49)

Y (s) = G(s)U(s) (4.50)

We’d like to relate the samples of the output Y ∗ (s) to samples of the input R∗(s). We can simply
“star” each transform,

E∗ = R∗ − Y ∗ (4.51)

M∗ = E∗D∗ (4.52)

U∗ = M∗ (since samples of u and m are the same) (4.53)

Y ∗ = [GU ]∗ (4.54)

Equations (4.49) and (4.54) give us

Y ∗ =

[
GM∗

(
1− e−Ts

s

)]∗
(4.55)

where we should remember that the “star” operation is really the act of impulse-modulating, then
Laplace transforming.

Anyway, in equation (4.55) both M∗ and (1 − e−Ts) may be taken outside the “*” since they’re
already impulse sampled (an easy way to check this is to see that they both have periodic spectra).
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Therefore,

Y ∗ = (1− e−Ts)M∗
(
G

s

)∗
= (1− e−Ts)E∗D∗

(
G

s

)∗
= (1− e−Ts)D∗

(
G

s

)∗
[R∗ − Y ∗] (4.56)

Make the definition

(1− e−Ts)
(
G

s

)∗
= G∗ (4.57)

then it follows that
Y ∗ = D∗G∗[R∗ − Y ∗] (4.58)

and we get a discrete system transfer function

Y ∗

R∗
=

D∗G∗

1 +D∗G∗
(4.59)

which can also be written as
Y (z)

R(z)
=

D(z)G(z)

1 +D(z)G(z)
(4.60)

This block diagram is a common one, and will serve to model many actual systems. Make sure you
understand this derivation.

Example 2

Consider the same block diagram as before, and let

G(s) =
1

s+ 1

a first order plant with time constant of 1 second. Let sampling period T = 0.5 seconds.

Let the computer program be a backward rectangular integrator,

mk = mk−1 +Kek

and let the D/A be modeled as a ZOH, of course.

Computer. Applying the z-transform to the computer difference equation, we get

M(z) = z−1M(z) +KE(z)

therefore
M(z)

E(z)
= D(z) =

K

1− z−1
=

Kz

z − 1
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Plant and ZOH. First consider (G/s)∗, where

G(s)

s
=

1

s(s+ 1)

and [
G(s)

s

]∗
= Z

{
G(s)

s

}
=

z(1− e−T )

(z − 1)(z − e−T )
=

0.3935z

(z − 1)(z − 0.6065)

Using equation (4.57),

G∗ = (1− e−Ts)
(
G

s

)∗
⇒ G(z) = (1− z−1)Z

{
G(s)

s

}
=
z − 1

z
Z
{
G(s)

s

}
So

G(z) =
z − 1

z

0.3935z

(z − 1)(z − 0.6065)
=

0.3935

z − 0.6065

and

D(z)G(z) =
0.3935Kz

(z − 1)(z − 0.6065)

Closed-loop system. The closed-loop transfer function is

Y (z)

R(z)
=

D(z)G(z)

1 +D(z)G(z)
=

0.3935Kz

(z − 1)(z − 0.6065) + 0.3935Kz
=

0.3935Kz

z2 + (0.3935K − 1.6065)z + 0.6065

The roots of the denominator polynomial (closed-loop poles) depend on the value of gain K that is
chosen. Is this system conditionally stable?

4.5.3 Response between samples

It is usually not necessary to find the response between samples, but it is possible. Starting from
equation (4.50), one can show that

Y (s) = R∗
D∗

1 +D∗G∗
1− e−Ts

s
G(s) (4.61)

The “starred” terms in (4.61) are all composed of impulses, and 1 − e−Ts, which is a delay. The
only thing left is G(s)/s, which is what the impulses act on. But G(s)/s is the step response of the
plant G(s)! Thus between samples we will see the (scaled and biased) plant step response.
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Homework Problems

Problem 1.

Using MATLAB, verify the Fourier series expansion of the impulse train given in equation (4.15) by
plotting a few periods of the Fourier series for several numbers of terms, such as 3,10, 100, etc.

Problem 2.

Sketch the step response y(t) of the system shown below for the three samples k = 0, 1, 2. Use
sample period T = 1.

1 − e
−Ts

s

1

s + 1

r(t) y(t)

T+
−

ZOH G(s)

Problem 3.

Assume the plant transfer functions below are preceded by a zero-order hold. Compute the equivalent
discrete transfer function G(z). Use sampling period T = 1. I would like you to find the G(z)
by hand, then compare your results to MATLAB. Note: This is the “zero-order hold” discrete
simulation method that we didn’t cover in Chapter 3.

(a) G(s) =
1

s2

(b) G(s) =
1

s(s+ 1)

(c) G(s) =
1

s2 − 1

Problem 4.

Using a MATLAB program, verify the ideal reconstruction method given in equation (4.28). For
your sampled data, use 6 samples (k = 0...5) of a 1 Hz sine wave with T = 0.2. Compute a full period
of the reconstructed continuous signal at a much finer time step, such as 0.01 second. Compare the
reconstructed signal using only 6 samples with the original continuous signal. It really works!
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Chapter 5

Design Using Transform Methods

5.1 Introduction

In this chapter we will discuss digital control system design using transform-based methods. As
with continuous controllers, the goal of design is to transform the behavior from unacceptable to
acceptable. Specific design specifications are, of course, different from application to application. We
will take an application of controlling the azimuth angle of a large antenna, and use this application
to illustrate some basic performance issues:

1. Steady-state accuracy.

2. Transient response.

3. Disturbance rejection

4. Control effort and gain distribution

5. Sensitivity to parameter changes

A typical control system application will involve all of these issues. We nearly always want adequate
steady-state accuracy; transient response is also usually important. Disturbance rejection must be
addressed if the plant is subject to disturbance inputs during operation. Control effort and gain
distribution must be analyzed to preclude component saturation, and gain distribution specifically
takes on greater importance in digital controllers, with A/D and D/A resolution involved. Finally,
component parameters will change, a thorough design will examine the system behavior with these
changes.

Pole-placement design will be used in this chapter, in which the designer chooses the locations of
the system closed-loop poles, then designs a controller to place them there. The root locus method
is a pole-placement method for transform-based design. The mathematics of the root locus method

75
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are independent of complex domain, thus the technique is the same whether used in the s-plane or
z-plane. The reader should review the coverage of the root-locus method in an introductory controls
textbook.

Frequency-domain methods (Bode and Nyquist plots), which are frequently used for the design of
continuous control systems, require some adaptation when used with digital control systems, and
will not be discussed in this chapter.

There are two strategies for pole-placement transform-based design, which are:

• Design in the s-plane by “discrete equivalent”

• Direct Design in the z-plane.

In the first method, we design a continuous controller in the s-plane, using methods from continuous
system modeling and analysis, obtaining some compensator Gc(s). To implement this in a digital
control system, use one of the methods of Chapter 3 to get a discrete equivalent Gc(z), then use this
in the digital control system. Note that this method never considers the effect of sampling on the
plant. This will cause the resulting system to be in error. The extent of this error depends mainly
on how fast you sample. If sampling is “fast” there will be less error; if sampling is slower—more
error.

In the second method, “direct” design in the z-plane, we get a discrete domain model of the plant
dynamics. Then the controller design is done in the sampled domain, the z-plane, from the outset.
In this case the design is “guaranteed” to work, since we have considered the effect of sampling on
the plant.

5.2 Example System and Specifications

Consider the control of the azimuth pointing angle of a large antenna, such as a radio telescope.
This can be considered angular position control of a large rotary inertia. The actuator will be a DC
electric motor. The “plant” will be taken as the combination of actuator and antenna. The equation
of motion of the plant is

Jθ̈ +Bθ̇ = T + Tw (5.1)

where

θ = antenna angle (controlled variable

J = total rotary inertia

B = total viscous friction (includes back emf)

T = motor torque

Tw = wind (disturbance) torque

A block diagram of the plant is shown in Figure 5.1. Assume that J/B = 10 seconds. This is a
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Figure 5.1: Block diagram of antenna plant.

+ -
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1

s
u

w

y1

10s

Figure 5.2: Another block diagram of antenna plant.

mechanical time constant, and if the antenna were given an initial velocity, it would decay to 63%
of this velocity in one time constant, or 10 seconds. With this assumption, the equation of motion
can be written

J

B
θ̈ + θ̇ =

T

B
+
Tw
B

(5.2)

or

10θ̈ + θ̇ =
T

B
+
Tw
B

(5.3)

Defining new variables as

u
∆
=

T

B
(5.4)

w
∆
=

Tw
B

(5.5)

y
∆
= θ (5.6)

we can redraw the block diagram as shown in Figure 5.2

which has transfer functions

Y (s)

U(s)
=

1

s(10s+ 1)
=

0.1

s(s+ 0.1)
(5.7)

Y (s)

W (s)
=

0.1

s(s+ 0.1)
(5.8)
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D(z) G(z)

+

+

Figure 5.3: Block diagram for ss error analysis.

Our controller for this plant will accept a reference position (set point) θr, and will compute control
force T such that the tracking error e = θr − θ satisfies specifications.

5.2.1 Steady-State Accuracy

For this antenna control system, the steady-state accuracy specification is given as follows:

For reference input θr(t) = 0.01t (this is 34o/minute) after transients die out, steady-state
error θr − θ < 0.01 rad.

In general, tracking error comes from two sources: changes in the reference input and the onset
of disturbances. As you will recall from your continuous control course, system Type determines
steady-state behavior,

Type 0. Finite steady-state error when setpoint is a constant position (step input).

Type 1. Finite steady-state error when setpoint is a constant velocity (ramp input), and zero error
when setpoint is constant position.

Type 2. Finite steady-state error when setpoint is a constant acceleration (parabolic input), and
zero error when setpoint is constant velocity or position.

Note that “position, velocity, and acceleration” refer to the rates of change of the setpoint variable,
not the variable itself (the setpoint could be a temperature, for example).

To compute the steady-state error, consider the system block diagram shown in Figure 5.3. This
block diagram is in sampled form; all variables and transfer functions are functions of z. We will let
the disturbance w be zero, it is shown in Figure 5.3 for generality. The system equations are

E(z) = R(z)−G(z)D(z)E(z) (5.9)

so

E(z) =
R(z)

1 +G(z)D(z)
(5.10)
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Step input, position error doefficient. Let r(t) be a step of magnitude ro, thus

R(z) =
roz

z − 1
(5.11)

so the error is

E(z) =
roz

z − 1

1

1 +G(z)D(z)
(5.12)

Now apply the final value theorem to E(z):

e(∞) = lim
z→1

(z − 1)
roz

z − 1

1

1 +G(z)D(z)

=
ro

1 +G(1)D(1)
(5.13)

∆
=

ro
1 +Kp

(5.14)

and the position error coefficient is given by

Kp
∆
= G(1)D(1) (5.15)

and the steady-state error is given by equation (5.14).

The position error coefficient Kp varies with system Type as:

Type 0: G(z)D(z) has no poles at z = 1, Kp is finite.

Type 1: G(z)D(z) has one pole at z = 1, Kp =∞.

Type 2: G(z)D(z) has two poles at z = 1, Kp =∞.

Ramp input, velocity error coefficient. Here consider a ramp input of slope vo, given by

R(z) =
voTz

(z − 1)2
(5.16)

then the error is

E(z) =
voTz

(z − 1)2

1

1 +G(z)D(z)
(5.17)

The steady-state error is

e(∞) = lim
z→1

voTz

(z − 1)[1 +G(z)D(z)]

∆
=

vo
Kv

(5.18)

thus

Kv = lim
z→1

(z − 1)[1 +G(z)D(z)]

Tz

= lim
z→1

(z − 1)G(z)D(z)

Tz
(5.19)

The velocity error coefficient Kv varies with system Type as:
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Type 0: G(z)D(z) has no poles at z = 1, Kv is zero.

Type 1: G(z)D(z) has one pole at z = 1, Kv is finite.

Type 2: G(z)D(z) has two poles at z = 1, Kv =∞.

A similar development can be done for the acceleration error coefficient Ka. Type greater than 2 is
extremely difficult to stabilize, therefore rarely seen.

For the antenna servo, we can tolerate a steady-state error of 0.01 rad to a ramp input of slope 0.01.
Thus the velocity error coefficient should be used.

Since 1
Kv

= ss error
ramp slope

= 0.01
0.01 , then Kv ≥ 1 is necessary. This requirement must be met when the

controller is designed.

Continuous-domain error coefficients.

Recall that in the continuous domain, the error is defined exactly the same way in terms of the three
error coefficients, and the error coefficients are given by

Kp = lim
s→0

G(s)D(s) = G(0)D(0) (5.20)

Kv = lim
s→0

sG(s)D(s) (5.21)

Ka = lim
s→0

s2G(s)D(s) (5.22)

where G(s) is the plant and D(s) is a compensator. As with digital systems, these error coefficients
can be 0, finite, or ∞.

5.2.2 Transient Response

The goal here is maintain good dynamic error behavior. The specification on transient response may
be given in either the time or frequency domain, but given our preference for the root locus pole
placement technique, a time domain specification is appropriate.

Three specifications of the step response will be presented, percent overshoot, rise time, and settling
time. We will consider these in the time domain, getting corresponding s plane regions, then map
these to the z plane for design purposes. These will all be with reference to a continuous second-order
underdamped system with no zeros, which has transfer function

ω2
n

s2 + 2ζωn + ω2
n

. (5.23)

An example step response plot for this kind of system is shown in Figure 5.4 (with ζ = 0.5 and
ωn = 1, where the percent overshoot, rise time, and settling time are marked on the plot.
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Figure 5.4: Transient response specifications, showing percent over-
shoot PO, rise time tr, and settling time ts

Percent Overshoot. The percent overshoot PO is dependent only on damping ratio, and is given
(in percent) by

PO = e−ζπ/
√

1−ζ2 ∗ 100 (5.24)

≈
(

1− ζ

0.6

)
∗ 100 (5.25)

Taken as a limitation on damping ratio, if percent overshoot must be less than or equal to a value
PO, then an approximate result is

ζ ≥ 0.6

(
1− PO

100

)
. (5.26)
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Rise Time. The rise time tr is usually taken to be the time from the 10% to the 90% point of the
step response, and as such indicates the speed of the response. While there is no exact analytical
expression for the rise time, it is strongly dependent on natural frequency ωn, and a commonly-used
approximation is

tr ≈
1.8

ωn
(5.27)

which is most accurate when damping ratio ζ ≈ 0.5.

Expressed in terms of a desired rise time less than a given amount, the natural frequency must obey

ωn ≥
1.8

tr
. (5.28)

Settling Time. The settling time ts is the time elapsed until the response is guaranteed to stay
within a desired tolerance of the steady-state value, expressed as a percentage.

The expression for the unit step response (2nd order underdamped, no zeros) is

y(t) = 1− e−ζωnt cos (ωdt+ φ) (5.29)

where damped oscillating frequency ωd is

ωd = ωn
√

1− ζ2 (5.30)

The error transient is contained within the envelope e−ζωnt, and we can require ζωn large enough
so that the error decreases as fast as necessary.

For example, if we want the error to be less than 1% after ts seconds, then

e−ζωnts ≤ 0.01 (5.31)

and taking the natural log of both sides,

ζωnts ≥ 4.6 (5.32)

thus

ζωn ≥
4.6

ts
(5.33)

Allowable regions in the s plane. These three transient response specifications can be used to
describe allowable regions in the s plane for the system poles, again considering an underdamped
second-order system.

• Percent overshoot. PO is dependent only on damping ratio ζ, and lines of constant ζ are
radial lines in the s plane.

• Rise time. tr is dependent mainly on natural frequency ωn, and contours of constant ωn are
circles in the s plane.

• Settling time. ts is dependent on ζωn, which is the real part of a complex pole location.
Lines of constant ζωn are vertical lines in the s plane.
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Figure 5.5: Regions in the s-plane corresponding to restrictions on
PO, tr, and ts.

Example

For the antenna controller, assume that we are given the following transient response specifications:

Percent overshoot: PO ≤ 15%⇒ ζ ≥ 0.5.

Rise time: tr ≤ 6 sec ⇒ ωn ≥ 1.8
6 = 0.3.

Settling time: 1%ts ≤ 20 sec ⇒ ζωn ≥ 0.23.

Regions in the s-plane corresponding to these specifications are shown in Figure 5.5. The radial
lines shown are lines of constant damping ratio from ζ = 0.9, 0.8, 0.7 . . . 0.1.

Allowable regions in the z plane. The s plane regions shown in Figure 5.5 can be mapped to
the z plane using the pole mapping z = esT . They are shown in the z-plane drawn in Figure 5.6.
Recall the discussion in Section 2.5. . . lines of constant damping ratio ζ are logarithmic spirals; lines
of constant natural frequency ωn are nearly circular near z = 1, but are increasingly distorted as ωn
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Figure 5.6: Regions in the z-plane corresponding to restrictions on
PO ≤ 15%, tr ≤ 6 sec, and ts ≤ 20 sec. (Sampling period T = 1
seconds was chosen to obtain the tr and ts regions)

increases and the contours move to the left; and lines of constant “real part” or ζωn are contours of
constant radius. (NOTE: to draw the ωn and ts contours one must select a sampling period T ).

When designing a control system, to achieve the specified transient response we must have the
dominant poles within the allowable regions of Figure 5.6. Because clear dominance may not occur,
the final design should always be checked with a simulation to verify acceptable response.

5.2.3 Disturbance Rejection

Consider the block diagram of 5.3 with reference input R(z) = 0, and W (z) is a disturbance input.
Since R(z) = 0, then

E(z) = −[G(z)D(z)E(z) +G(z)W (z)] (5.34)

which can be rearranged

E(z) =
G(z)W (z)

1 +G(z)D(z)
(5.35)

Assume that the loop gain |G(z)D(z)| >> 1, then

E(z) ≈ W (z)

D(z)
(5.36)
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From equation(5.36) we conclude that the effect of a disturbance is reduced by having a high gain
preceding the entry point of the disturbance, in this case in block D(z). A high gain in G(z) would
not greatly affect the disturbance rejection.

Note that if D(z) were to contain an integration (pole at z = 1) this would cause infinite gain at
zero frequency, therefore zero frequency (DC) disturbances would be rejected completely, within the
limits of the actuators, of course.

5.2.4 Control Effort and Gain Distribution

In the course of a design, one must take care that components are not saturated. Using a worst-case
scenario, commands to amplifiers, actuators, etc. must be checked. This is done by redrawing the
block diagram to expose the variable of interest as the output, apply the appropriate input (either
setpoint or perhaps a disturbance) and obtain the response. This will be shown in future design
examples.

The gain distribution goes along with component saturation. A given design may call for a forward
path gain of K. This gain of K may be “placed” all in one component, such as an amplifier, or
it may be distributed among several components, the computer algorithm D(z), an op-amp signal
conditioning amplifier, and a power amplifier. Gain should be distributed according to the following
criteria:

• Minimize the likelihood of component saturation.

• Make use of the full range of A/D and D/A converters.

The second item is unique to digital control systems. If a 12-bit A/D converter with an input
signal range of ±5V receives an input which varies between ±1V, the effective resolution of the A/D
converter is reduced to less than 10 bits, since each bit corresponds to a factor of 2.

5.2.5 Parameter Sensitivity

One advantage of closed-loop control is reduced system sensitivity to changes in parameter values
within the loop. The larger the loop gain the lower the sensitivity. The principle may be stated
without analysis as:

Large gain around a parameter reduces the effect of changes in its value.

5.3 Design in the s plane by Discrete Equivalent

This is the first design method, and consists of the following steps:
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1. Design controller D(s), ignoring the presence of sampling.

2. Convert D(s) to discrete D(z) using one of the simulation methods of Chapter 3.

We will perform a third step,

3. Simulate the resulting discrete system to check performance.

This last step, of course, will require a discrete-domain plant model, and one of the chief reasons
one would do design in the continuous domain is because you don’t have a discrete plant model.
However, we’ll do it for educational reasons!

Antenna Azimuth Controller. Recall the antenna azimuth control system discussed in Section
5.2, whose transfer function was

G(s) =
0.1

s(s+ 0.1)
(5.37)

The performance specifications for the transient response were

Percent overshoot: PO ≤ 15%⇒ ζ ≥ 0.5.

Rise time: tr ≤ 6 sec ⇒ ωn ≥ 1.8
6 = 0.3.

Settling time: 1%ts ≤ 20 sec ⇒ ζωn ≥ 0.23.

A lead compensator D(s) of the form

D(s) =
K(s+ 0.1)

s+ 0.5
(5.38)

will satisfy these requirements, since the zero of D(s) will cancel the plant pole at s = −0.1 and will
substitute a pole at s = −0.5 which will result in higher natural frequency. Using the block diagram
of Figure 5.3, the continuous-domain closed-loop transfer function of the system is

Y (s)

R(s)
=

G(s)D(s)

1 +G(s)D(s)
(5.39)

The characteristic equation of this system is

1 +G(s)D(s) = 0 (5.40)

and using the proposed D(s) we have

G(s)D(s) =
0.1K

s(s+ 0.5)
(5.41)



5.3. DESIGN IN THE S PLANE BY DISCRETE EQUIVALENT 87

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

Figure 5.7: Root Locus of the antenna plant with D(s) compen-
sator.

thus the characteristic equation in root locus form is

1 +K
0.1

s(s+ 0.5)
= 0 (5.42)

The root locus diagram vs K is shown in Figure 5.7. A radial line at ζ = 0.5 and a circular arc
corresponding to ωn = 0.46 are shown, these are the boundaries defining the acceptable region for
transient response. The root locus branch is within the acceptable region, and a value of K = 2.26
corresponds to the closed-loop pole shown in Figure 5.7. For this value of K the continuous domain
closed-loop transfer function is

Y (s)

R(s)
=

0.226

s2 + 0.5s+ 0.226
(5.43)

and the damping ratio and natural frequency of the denominator of equation (5.43) are ζ = 0.53 and
ωn = 0.48, which are satisfactory. The unit step response of the antenna servo (completely in the
continuous time domain) is shown in Figure 5.8. The transient response of the continuous system
satisfies the specifications. In addition, to check the steady-state behavior, compute the velocity
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Figure 5.8: Unit Step Response of the Continuous Antenna Con-
troller Design

error coefficient, which for a continuous system is

Kv = lim
s→0

sG(s)D(s) =
0.226

0.5
= 0.45 (5.44)

which is less than the desired values of Kv = 1. So this design would not satisfy the steady-state
requirements, and a re-design would be necessary. However, neglect that for now.

Performance of the Discrete System

Let’s evaluate the transient performance of the sampled data system with the compensator we just
obtained. Note that it did satisfy the transient performance requirements.

First, the D(s) is

D(s) =
2.26(s+ 0.1)

s+ 0.5
(5.45)

which is simulated to yield a D(z). A sample period must be chosen, and we shall use T = 2 seconds.
This corresponds to fs = 0.5 Hz, and is about 6 times the system natural frequency.
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Discrete compensator. Using trapezoidal integration, D(z) is

D(z) =
1.6562(z − 0.8182)

z − 0.3333
(5.46)

Discrete model of plant. With T = 2 seconds, use the method of Chapter 4 to find the discrete
transfer function of a plant G(s) preceded by a zero-order hold. Thus

G(z) =
(
1− z−1

)
Z
{
G(s)

s

}
=

0.1873(z + 0.9355)

(z − 1)(z − 0.8187)
(5.47)

where the MATLAB ‘c2d’ function is useful in finding G(z), with the ‘zoh’ method. Note that
the pole/zero cancellation is maintained between G(z) and D(z) (the slight variation between pole
and zero value is probably because I wrote down a number and thereby lost some significant digits).
The closed-loop discrete domain transfer function for this system will be of the form

Y (z)

R(z)
=

G(z)D(z)

1 +G(z)D(z)

which yields
Y (z)

R(z)
=

0.3102(z + 0.9355)

z2 − 1.0231z + 0.6235
(5.48)

which has poles at z = 0.5115± j0.6015, for which ζ = 0.2631 and ωn = 0.4488. While ωn is pretty
close, the actual damping ratio is significantly less than the desired damping ratio of ζ = 0.5. This
was a consequence of designing a discrete-time controller in the continuous domain. For reference,
the unit step response of the actual discrete system is shown in Figure 5.9. Compare the two step
responses of Figure 5.8 and Figure 5.9. The actual output y(t) in Figure 5.9 would not have straight
lines between samples, it would have the shape of the plant’s step response, which is a ramp with
an exponential start-up transient. The samples, however, are correct.

If we had sampled faster, the continuous-domain design would have performed better.

5.4 Direct Design in the z Plane

Here we will design in the discrete domain from the start. A discrete tranfer function of the antenna
plant is given in equation (5.47). Even though we immediately tried a lead compensator in the
previous section, we will start here with proportional control.

Proportional Control This is the first control action to try. All controllers contain proportional
action, plus perhaps derivative and/or integral action. A discrete-domain block diagram of the
system with proportional control is shown below. The closed-loop transfer function of the system
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Figure 5.9: Unit Step Response of the Actual Discrete Antenna
Controller Design using the D(z) designed in the Continuous Do-
main.
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Figure 5.10: Root Locus of antenna system vs proportional gain
K.

with proportional control is
Y (z)

R(z)
=

KG(z)

1 +KG(z)
(5.49)

with characteristic equation 1 +KG(z) = 0, which is already in root locus form (always the case if
the root locus parameter is a loop gain). The z plane root locus is shown in Figure 5.10. Checking
Figure 5.6 for the acceptable regions for the closed-loop poles, it is apparent that proportional control
will not work. We need to reshape the root locus, in particular shifting the branches to the left in
the z-plane. This can be done by adding zeros and poles in the form of a compensator. Recall that
zeros attract the locus, while poles repel it. Thus a compensator with a zero nearer the +1 point
and a pole farther to the left will have the desired effect.

The compensator zero may be used to cancel the plant pole, the compensator pole placed far enough
to the left to cause the branches to go through the desired region.



92 CHAPTER 5. DESIGN USING TRANSFORM METHODS

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Real Axis

Im
ag

 A
xi

s

Figure 5.11: Root Locus of antenna system vs gain K using com-
pensator D(z).

A point in the z plane at z = 0.5± j0.37 has ζ = 0.6, ωn = 0.4, and r = 0.62, which are very close
to meeting the overshoot, rise time, and settling time specifications. . . let’s say close enough. Since
the breakaway point is about halfway between both poles, and the complex branches curve to the
left a little, place the compensator pole at z = 0.2, thus the compensator D(z) is

D(z) =
K(z − 0.8187)

z − 0.2
(5.50)

The root locus diagram for the system vs K with this compensator is shown in Figure 5.11. The
point on the complex locus corresponds to K = 1.08, and appears to be in or near the satisfactory
z plane region. With this compensator the system transfer function is

Y (z)

R(z)
=

0.2023(z + 0.9355)

z + 0.4989± j0.3747
(5.51)

The unit step response of this system is shown in Figure 5.12. The transient response is what we
expected from the design, unlike in the previous section.
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Figure 5.12: Step response of system designed in z plane.



94 CHAPTER 5. DESIGN USING TRANSFORM METHODS

Homework Problem Set 1

Problem 1.

Root-locus review. The following characteristic equations (denominators of closed-loop transfer func-
tions set equal to zero) must first be put into root-locus form using parameter K. You may either
sketch these by hand (not likely) or use MATLAB, but be sure you can find the real-axis branches,
numbers of asymptotes, asymptote intersection, departure angles, etc. manually.

(a) The locus below is typical of the behavior near s = 0 of a double integrator with lead com-
pensation or a single integration plus a real pole (DC motor from voltage to displacement, for
example) with lag compensation. If done manually, pay attention to the real axis arrival and
breakaway points.

s2(s+ 4) +K(s+ 1) = 0

(b) This transfer function contains complex poles. If done manually, note the departure angles
from the complex poles.

s(s+ 1)[(s+ 2)2 + 4] +K = 0

(c) This locus shows the use of complex zeros to compensate for the presence of complex poles
due to vibration modes. Note the departure and arrival angles from/to the complex roots.

s(s2 + 4) +K[(s+ 1)2 + 1] = 0

Problem 2.

Consider the attitude control of a satellite with rotary inertia J = 1. Assume you have proportional
actuators (thrusters) which can apply a torque to the satellite, as well as a transducer (inertial gyro
or IMU) which measures its attitude.

(a) Given that the continuous transfer function is G(s) = 1/Js2, find the discrete transfer function
G(z) when the plant is preceded by a sampler and ZOH. Let sample period T = 1 second.

(b) Sketch the root locus of this system as a function of proportional gain K with unity feedback.
What is the type of the uncompensated system?

(c) Add a lead network so that the dominant poles are at ζ = 0.5 and θ = 45o (this is an angle in
the z-plane). Plot the closed-loop step response.

(d) Plot the open- and closed-loop frequency response for the system in part (c). Show the phase
and gain margins.
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Figure 5.13: Unit step response of plant G(s).

5.5 Another Design Example

Consider the second-order plant with ζ = 0.1 and ωn = 100 rad/sec (fn ≈ 16 Hz):

G(s) =
Y (s)

U(s)
=

1002

s2 + 2(0.1)(100)s+ 1002

=
10000

s2 + 20s+ 10000
(5.52)

This behavior would be encountered when trying to position an inertia through a transmission
(shaft, gears, etc.) which has flexibility. The unit step response of this plant may be obtained by
the following MATLAB script:

>>zeta = 0.1;

>>wn = 100;

>>num = [0 0 wn^2];

>>den = [1 2*zeta*wn wn^2];

>>step(num,den);

A plot of the response is shown in Figure 5.13. The slow-decaying oscillation, or “ringing,” is
apparent from the plot. Also, the plant G(s) has no free integrations, and therefore will be Type 0.
We propose to use a digital feedback control system to meet three performance criteria—
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1. Increase damping so that PO <10%.

2. Achieve rise time of tr =0.03 seconds (a little slower than the original plant).

3. Increase system Type to 1.

Note that we have not tried to maintain the rise time of the original system. It might be unrealistic
to try to ask for too much, we are already attempting to improve both transient response and and
steady-state error. . . trying to maintain the original speed of response may well be impossible!

Acceptable z-plane regions for poles The first step will be to find translate the transient
response performance specifications into allowable regions in the z plane. The overshoot and rise
time give:

• Overshoot: PO <10% ⇒ ζ > 0.54.

• Rise time: tr < 0.03 seconds ⇒ ωn >
1.8
0.03 = 60 rad/sec.

Sampling rate. To find the acceptable contours in the z plane, we must select a sample period
T (needed to map z = esT . A rule of thumb is to pick the sampling frequency 6 to 20 times greater
than the highest frequency in the system. The natural frequency of the plant G(s) is about 16 Hz.,
so select fs = 100 Hz as the sampling frequency, hence T = 0.01 seconds. This is on the slow side,
especially if high-frequency disturbances are expected, but will yield satisfactory results for setpoint
tracking. The z-plane regions corresponding to the limits on ζ and ωn are shown in Figure 5.14.
This figure was generated with the following MATLAB commands:

>>T = 0.01;

>>zeta = 0.54;

>>wn = 60;

>>zgrid(zeta,wn*T,’new’);

>>grid;

>>axis(’square’);

>>axis(’equal’);

Block diagram of control system. A block diagram of the feedback control system is shown in
Figure 5.14. As before, assume an error-sampled system, with a D/A converter following the digital
controller. A unity feedback loop completes the system.

Discrete model of plant. Preceding the plant G(s) by a sampler and following it with a ZOH
yields a discrete plant model G(z). The following MATLAB script (entered interactively) will do
this:
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>> T = 0.01;

>> wn_plant = 100;

>> zeta_plant = 0.1;

>> num_gc = [0 0 wn_plant^2];

>> den_gc = [1 2*zeta_plant*wn_plant wn_plant^2];

>> Gc = tf(num_gc,den_gc); % Continuous plant G(s)

>> Gd = c2d(Gc,T) % Discrete plant G(z)

Transfer function:

0.431 z + 0.4023

-----------------------

z^2 - 0.9854 z + 0.8187

Sampling time: 0.01

thus the discrete plant model is

G(z) =
Y (z)

U(z)
=

0.4310z−1 + 0.4023z−2

1− 0.9854z−1 + 0.8187z−2
(5.53)
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This may expressed in MATLAB “pole/zero” form by using the zpk conversion on LTI system Gd:

>> zpk(Gd)

Zero/pole/gain:

0.43103 (z+0.9334)

-------------------------

(z^2 - 0.9854z + 0.8187)

Sampling time: 0.01

hence G(z) may be expressed

G(z) =
0.4310(z + 0.9334)

z − 0.4927± j0.7589
, (5.54)

where I took the final step of factoring the denominator to get the poles explicitly in (5.54).

Equation (5.53) is useful in generating the difference equation for G(z), while equation (5.54) explic-
itly shows the poles and zeros, and from the pole locations the damping ratio and natural frequency
(or time constant for real poles) may be found, giving insight into the natural response of the plant.

Control strategy. Pure proportional will clearly not work, since it doesn’t increase system Type.
The controller D(z) must add a pole at z = 1 to increase Type to 1. Adding integrations always
hurts stability, and since this plant is lightly damped already, we will need to do more. Adding zeros
in the forward path (or the feedback path) is adding derivative action, which stabilizes the system.

The obvious way to add zeros is to cancel undesirable plant dynamics, which is what we did in
the antenna controller of the previous section. Here the undesirable plant dynamics are the lightly
damped complex poles, hence we will place zeros of D(z) at these locations. There must be a pole
of D(z) at z = 1. To be causal, compensator D(z) must not have more zeros than poles, hence we
must add another pole to D(z). Note that poles tend to repel root locus branches, so this added
pole will push the locus to the right. Placing this pole on the negative real axis will lessen its effect,
but we must be careful about ending up with a closed-loop pole on the negative real axis, because of
the “alternating” nature of the corresponding response. Compensator poles on the negative real axis
will give the plant command a degree of this alternating response, but as long as it is not excessive
it is not a cause for concern. So the form of our D(z) is

D(z) =
K(z − 0.4927± j0.7589)

(z − 1)(z − p)
(5.55)

where pole location p and (of course) gain K need to be determined.

It is useful to sketch the root-locus diagram of the system by hand to get an idea of what is likely
to happen, especially regarding the placement of the second compensator pole.

The system closed-loop transfer function is

Y (z)

R(z)
=

G(z)D(z)

1 +G(z)D(z)
(5.56)
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Figure 5.15: Hand sketch of root locus for Example 2.

and the system characteristic equation is

1 +G(z)D(z) = 0 (5.57)

which upon substitution for G(z) and D(z) becomes

1 +
0.4310K(z − 0.4927± j0.7589)(z + 0.9334)

(z − 0.4927± j0.7589)(z − 1)(z − p)
(5.58)

The complex poles and zeros may be algebraically cancelled, leaving

1 +
0.4310K(z + 0.9334)

(z − 1)(z − p)
(5.59)

A hand sketch of this locus for p = 0 is shown in Figure 5.15. The canceled pole and zero are not
shown in Figure 5.15, this simplifies the sketch.

Computer root locus analysis. Comparing the hand-drawn sketch of Figure 5.15 with the
region of acceptibility in Figure 5.14, it looks like placing the second pole of D(z) at z = 0 may
work. A root locus diagram may be generated using MATLAB as follows:

>>num_rl = 0.4310*[1 0.9334];

>>den_rl = conv([1 -1],[1 0]);

>>zgrid(’new’);

>>rlocus(num_rl,den_rl);
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Figure 5.16: MATLAB root locus for Example 2.

The zgrid(‘new’) function draws a z-plane, with lines of constant damping ratio (ζ = 0.1, 0.2, 0.3, . . ., 0.8, 0.9),
and lines of constant natural frequency (ωnT = 0.1π, 0.2π, . . ., 0.8π, 0.9π). These lines aid selection
of desired pole locations, which is done using the rlocfind function as shown below, where I have
selected a damping ratio of ζ = 0.7.

>>K = rlocfind(num_rl,den_rl);

Select a point in the graphics window

selected_point =

0.3707 + 0.3245i

>>K

K =

0.6022

The selected closed-loop pole locations are shown by a “star” on the root locus of Figure 5.16.
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Simulation of closed-loop system. We have selected a compensator D(z) that will apparently
work; it is given by

D(z) =
0.6022(z − 0.4927± j0.7589)

z(z − 1)
(5.60)

The MATLAB LTI form of D(z) may be obtained as follows:

>>zeros_dz = [0.4927+j*0.7589 0.4927-j*0.7589]’ % Zeros of D(z)

zeros_dz =

0.4927 - 0.7589i

0.4927 + 0.7589i

>>poles_dz = [0 1]’ % Poles of D(z)

poles_dz =

0

1

>>K_dz = 0.6022; % Numerator constant for D(z)

>>[num_dz,den_dz] = zp2tf(zeros_dz,poles_dz,K_dz)

num_dz =

0.6022 -0.5934 0.4930

den_dz =

1 -1 0

>> Dd = tf(num_dz,den_dz,T)

Transfer function:

0.6022 z^2 - 0.5934 z + 0.493

-----------------------------

z^2 - z

Sampling time: 0.01

so the polynomial form of the compensator D(z) is (negative powers of z):

D(z) =
U(z)

E(z)
=

0.6022− 0.5934z−1 + 0.4930z−2

1− z−1
. (5.61)

The transfer function of the closed-loop system can be found using MATLAB, in this case (unity
feedback) using the series (combines two blocks in series) and the feedback (computes an LTI
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Figure 5.17: Unit step response of closed-loop system for Example 2.

model for a feedback loop) functions. We have both D(z) and G(z) in MATLAB LTI form, so:

>> forward = series(Dd,Gd); % Forward path is D(z)*G(z)

>> sys_cl = feedback(forward,1); % Closed-loop, unity feedback

Note that MATLAB will not do pole/zero cancellation (look at sys cl in MATLAB, for example),
but they will cancel numerically during a response simulation.

Step response. The unit step response of the closed-loop system is shown in Figure 5.17. Compare
this plot with the uncontrolled plant of Figure 5.13. The MATLAB commands that generated this
response are

>>k = 0:10; % Define sample sequence

>>t = k*T; % Define time vector

>>y = step(sys_cl,t); % Generate samples corresponding to time vector

>>plot(t,y,’o’,t,y,’-’);

>>grid;

>>xlabel(’Time(seconds)’);

>>ylabel(’Response y(t)’);

>>title(’Unit Step Response’);
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Control force. As a final step in this example, let’s examine the time history of control force u(t)
applied to the plant. One should take a worst-case input, then verify that u(t) will not saturate the
plant (the same check can be applied to all input and output signals). The block diagram must be
redrawn to expose U(z) as the output, as shown below. Note that pole/zero cancellation will not
occur here as it did when Y (z) was the output. The transfer function is then

+

-

R(z) E(z) U(z )

Y (z)

D(z)

G(z)

U(z)

R(z)
=

D(z)

1 +G(z)D(z)
(5.62)

which may be found using the MATLAB feedback function, which finds a closed-loop system given
a forward and a feedback transfer function:

>> sys_cf = feedback(Dd,Gd); % D(z) in forward path, G(z) in feedback path

Lacking an actual worst-case reference input to apply, we’ll just use a unit step input (with the same
time vector as before):

>> step(sys_cf,t);

>> xlabel(’Time (seconds)’);

>> ylabel(’Control force u(t)’);

The resulting control force u(t) is shown in Figure 5.18. If we knew the physical components, this
plot could be used to check for saturation. Note the “stairstep” appearnace of the plot is appropriate
for u(t) since it is the output of the D/A, which is a ZOH, and generates a “stairstep” signal.



104 CHAPTER 5. DESIGN USING TRANSFORM METHODS

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time (seconds)

C
on

tr
ol

 fo
rc

e 
u(

t)

Figure 5.18: Control force u(t) for unit step r(t) in Example 2.

5.6 Modeling using Simulink

The MATLAB “companion” application Simulink offers a graphical approach to system simulation,
and is frequently more useful than “plain MATLAB” for that function. However, it is the author’s
opinion that a good grounding in MATLAB must precede the use of Simulink. Also,

“Simulink is only for simulation, and is NOT A DESIGN TOOL!!”

That being said, we’ll use the design example of Section 5.5 as the system to illustrate the use of
Simulink. Refer now to the block diagram of Figure 5.14, which is reproduced in Figure 5.19.

Recall that the compensator D(z) transfer function in Figure 5.19 is given by

D(z) =
0.6022z2 − 0.5943z + 0.493

z(z − 1)
=

0.6022z2 − 0.5943z + 0.493

z2 − z
(5.63)

The steps in creating a Simulink model of this system will be described below.



5.6. MODELING USING SIMULINK 105

D(z)
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s
2 + 2(0.1)(100)s + 1002

ZOH
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−

R(s) E(s) E(z) U(s) Y (s)
compensator second-order plant G(s)

T

Figure 5.19: Block diagram for Simulink model.

5.6.1 Creating the Simulink Model

Figure 5.20 below shows the finished model. Note that it bears a very strong resemblance to the
block diagram of Figure 5.19.

Zero−Order
Hold

10000
s  +20s+100002

Transfer FcnStep Output y

0.6022z  −0.5934z+0.4932

z  −z2

Discrete
Transfer Fcn

Control u

e ur
y

y

Figure 5.20: Block diagram of the finished Simulink model.

The blocks I used in creating this model are: Sum, Discrete Transfer Fcn, Zero-Order Hold,

Transfer Fcn, Step, Scope. I didn’t change their names in Figure 5.20 for clarity (except for the
scopes). After placing a block you may change its name to reflect its physical significance.

Some items of note are:

• I modified step to occur at t = 0 instead of the t = 1 default.

• In placing the Discrete Transfer Fcn a sampler is automatically created. You must specify
the sample period (T = 0.01 here) while modifying the block.

• The Zero-Order Hold block can “inherit” its sample period (-1 for sample time).

• Double-click on a signal path to enter a name (like r, e, u, y).

• The “stop time” under Simulation/Configuration Parameters should be changed from its
default of 10 seconds to 0.1 seconds.

One of the advantageous of using Simulink is that “intermediate” variables (like control force u)
can be easily displaced by just “picking them off” and connecting to a scope. The Simulink plot-
ting facilities are minimal, but a given variable can be connected to a “to Workspace” block for
subsequent plotting in MATLAB.
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Figure 5.21 shows a screenshot of the Simulink model and the plots created by the scopes. The
response shown in the plots agrees with our MATLAB simulation of Figures 5.17 and 5.18.

Figure 5.21: Simulink screenshot showing plots.
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5.7 PID Control (Mode Controllers)

There are three basic types of control actions:

• Proportional—control force is proportional to the error signal.

• Integral—control force is proportional to the integral of the error signal

• Derivative—control force is proportional to the derivative of the error signal.

Integral and derivative control actions are used in combination with proportional, hence PI, PD, or
PID controllers. The control modes are used in parallel, as shown in the block diagram of Figure 5.22.
PID control action in the continuous domain is given by

++

+

e( t) u(t)
KDs

KP

KI

s

Figure 5.22: PID control action

u(t) = KP e(t) +KI

∫ t

0

e(t)dt+KD ė(t). (5.64)

The three control actions will now be considered in the discrete domain.

5.7.1 Proportional Control

A discrete implementation of proportional control action is identical to continuous, thus

u(t) = KP e(t)⇒ D(s) = KP ,

the discrete is

uk = KP ek ⇒ D(z) = KP

Proportional control is always present—either by itself, or allied with derivative and/or integral
control as shown below.
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5.7.2 Derivative Action

In continuous systems, derivative action has the form

u(t) = KD ė(t)⇒ D(s) = KDs.

In the discrete domain, differentiation can be approximated by the first difference, that is,

uk = KD{ek − ek−1} ⇒ D(z) = KD(1− z−1) = KD
z − 1

z

Derivative action is typically used to improve system stability and transient response.

5.7.3 Integral Action

Continuous integral action is given by

u(t) = KI

∫ t

0

e(t)dt⇒ D(s) =
KI

s

Discrete integration is a cumulative sum, represented by

uk = uk−1 +KIek ⇒ D(z) = KI
1

1− z−1
= KI

z

z − 1

NOTE: Gains KI and KD have different values in the continuous and discrete domains!

Integral action is typically used to improve system steady-state error behavior. It usually worsens
transient response and stability.

The I and D control actions are rarely used by themselves, but are coupled with proportional (P)
action for PD, PI, or PID controllers.

5.7.4 PD Control

The combination of Proportional and Derivative action is given by

KP +KD
z − 1

z
=

KD

(
z − KD+KP

KD

)
z

=
K(z − a)

z

which is a lead compensator of the same form we used in Example 2.
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5.7.5 PI Control

Proportional plus Integral control is

KP +KI
z

z − 1
=

(KP +KI)
(
z − KP

KP+KI

)
z − 1

=
K(z − a)

z − 1

which has a pole at z = 1 corresponding to the integration, and a zero on the positive real axis
nearer the origin. It is this pole at z = 1 that improves steady-state behavior but hurts stability
and transient response. The zero is usually placed fairly near the pole at z = 1 to reduce the effect
of the “slow” closed-loop pole that will be in this region. Note that it is the open-loop pole at z = 1
that improves the steady-state error by raising the Type (see Sec. 5.2.1) of the system.

5.7.6 PID Control

Adding integral action to form three-mode proportional plus integral plus derivative action yields

KP +KD
z − 1

z
+KI

z

z − 1
=

(KP +KD +KI) z
2 − (KP + 2KD) z +KD

z(z − 1)

=
K(z2 − az + b)

z(z − 1)

which has a pole at z = 1 from the integration, a pole at z = 0, and two zeros which may be real or
complex, depending on the relative values of the three gains.

One strategy for PID design is as follows:

1. Place one zero and pole as for the PD design.

2. Place the second pole at z = 1 (the integration), and place the zero “nearby” for the same
reason discussed at the end of Section 5.7.5 above.
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Homework Problem Set 2

Problem 1.

It is possible to suspend a mass of magnetic material by means of an electromagnet whose current
is controlled by the position of the mass. A sketch of a possible setup is shown in Figure 5.23. The

controller amplifier magnet

sensor

x

i

Figure 5.23: A ball suspended by an electromagnet.

equations of motion are

mẍ = −mg + f(x, I),

where the force on the ball due to the electromagnet is given by f(x, I). At equilibrium, the magnet
force balances the gravity force; call the current at that equilibrium point Io, this will be the operating
point. If we write I = Io + i and expand f about {x = 0 and I = Io}, neglecting higher-order terms,
we obtain

mẍ = k1x+ k2i.

Use values of m=0.02 kg, k1=20 N/m, k2=0.4 N/A.

(a) Compute the transfer function from i to x and draw the (continuous) root locus for proportional
feedback i = −Kx.

(b) Let the sample period be T =0.02 sec and compute the plant discrete transfer function when
used with a zero-order hold.

(c) Design a digital controller for the magnetic levitator to meet specifications tr ≤ 0.1 sec, ts ≤ 0.4
sec, and overshoot ≤ 20%.

(d) Plot the step response of your design (introduce a reference input xr) and show both ball
displacement x and control current i. If the sensor can measure x over a range of only ± 1

4
cm, and if the amplifier can provide a current of only 1A, what is the maximum displacement
possible for control (neglecting the nonlinear terms in f(x, I))?
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Problem 2.

For the automotive cruise-control system shown in Figure 5.24, velocity is given in mph, while grade
(a disturbance) is given in “% grade.” Use sample period T = 0.5 sec and

(a) Design a proportional controller to achieve a tr of 5 seconds with no overshoot.

(b) Determine the speed error on a 3% grade (i.e. Gr = 3 in Figure 5.24).

(c) Design a PD, PI, or PID controller (the simplest one necessary) to meet the same specifications
as part (a) and that has no error on grades.

ZOH

throttle
fuel

dynamics
vehicle

dynamics

sensor

Grade

Vr
+

-

+ +

T

V

1

D(z)
10

s +10

3

s + 3

0.2

s + 0.2

Gr

Figure 5.24: An automotive cruise-control system.
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Chapter 6

State-Space Analysis of Continuous
Systems

6.1 Introduction

As a prelude to the state-space analysis of discrete-time systems, this chapter will introduce state-
variable modeling and analysis of continuous-time systems. While many students will have been
exposed to this material, we fell that a review is useful before the concepts are applied to discrete-
time systems.

The idea of state space comes from the state-variable method of describing differential equations. In
this method, dynamic systems are described by a set of first-order differential equations in variables
called the states, and the solution may be thought of as a trajectory in the state space. This
formulation is particularly well-suited to computer calculation, and is as easily applied to nonlinear,
time-varying systems as to linear time-invariant systems. We will examine only linear time-invariant
(LTI) systems in this course.

Use of the state-space approach is often referred to as modern control, and the use of transform
methods termed classical control. However, the state-space formulation of differential equations is
over 100 years old, being introduced to control design in the late 1950s (by Soviet mathematicians),
so it may be misleading to consider it “modern.” It is better to refer to the two approaches as
transform methods and state-space methods.

The goal of state-space design is the same as transform-based design, to find compensation D(s)
that yields acceptable performance in the system shown in Figure 6.1. The state-space approach is
so different that it is easy to lose sight of the end result, which is the same.

State-space methods are especially advantageous when designing controllers for systems with mul-
tiple inputs or outputs. The problem formulation is the same, whether there are single or multiple
inputs and outputs. We will, however, generally consider single-input single-output (SISO) systems

113
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Compensation PlantR E U Y+

-
D(s) G(s)

Figure 6.1: Control system design.

in this course, although there will be exceptions. Another advantage of state-space formulation is
that the internal behavior is exposed, rather than the “black-box” input-output modeling of trans-
form methods.

6.2 System Description

Any lumped-parameter dynamic system can be described using a set of first-order ordinary differ-
ential equations, where the dependent variables are the state variables.

State Variables Knowledge of the state variables at some initial time, plus knowledge of the
input from that time on, is sufficient to predict the system behavior. Variables with which initial
conditions are necessary are by definition state variables. State variables also define the energy
stored within the system. In mechanical systems, position and velocity are valid state variables. In
electrical systems, voltage and current are state variables. The system output and its derivatives
are always valid state variables. Any linear combination of state variables is itself a valid state
variable. . . there are an infinite number of choices. The set of state variables is collectively called
the state vector or simply the state.

6.2.1 State Equation and Output Equation

The general form of each scalar state equation is

ẋ = f(x,u, t)

For an LTI system the state equation can be written in matrix form

ẋ = Ax + Bu (6.1)

where boldface notation denotes vector/matrix quantities. The n × 1 state vector is x, and n × n
matrix A is the system matrix. Input vector u is m× 1. Input matrix B is dimension n×m. For a
single-input system, u is a scalar, and B is dimension n× 1.

The output equation is

y = Cx + Du (6.2)
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where y is the p×1 vector of outputs, C is the p×n output matrix, and D is the p×m feedforward
matrix which connects the input directly to the output.

Usually in this course we will have a SISO system, and the state equation and output equations can
be written

ẋ = Ax + Bu (6.3)

y = Cx +Du (6.4)

where feedforward term D is usually zero for physical systems.

Example

Consider the spring-mass-damper system shown in Figure 6.2. The input is applied force f(t) and

k

b

m

x

f (t)

Figure 6.2: Spring-mass-damper system.

the output is position x(t). The equation of motion for this system is

f(t)− bẋ− kx = mẍ

Position and velocity are valid state variables, hence

x1
∆
= x

x2
∆
= ẋ

The state equations are

ẋ1 = x2

ẋ2 = − k
m
x1 −

b

m
x2 +

1

m
f(t)

hence the system description is

A =

[
0 1

−k/m −b/m

]
,B =

[
0

1/m

]
,C =

[
1 0

]
, D = 0
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6.2.2 State equation from Transfer Function

Given transfer function
Y (s)

U(s)
=

b2s
2 + b1s+ b0

s3 + a2s2 + a1s+ a0
(6.5)

it can be shown that a state equation is ẋ1

ẋ2

ẋ3

 =

 0 1 0
0 0 1
−a0 −a1 −a2

 x1

x2

x3

+

 0
0
1

u(t) (6.6)

and the output equation is

y(t) =
[
b0 b1 b2

]  x1

x2

x3

 (6.7)

We will see shortly that equations (6.6–6.7) are in a special (minimal) form called (lower) control
canonical form.

6.2.3 Transfer Function from State-Variable Description

It is possible to get a transfer function from the state space description of a system. Assuming zero
initial conditions on state x, taking the Laplace transform of state equation

ẋ = Ax + Bu (6.8)

yields
sX(s) = AX(s) + BU(s) (6.9)

which can be rearranged (paying attention to the multiplication order since these are matrices!) as

(sI−A)X(s) = BU(s) (6.10)

which can be solved for
X(s) = (sI−A)

−1
BU(s) (6.11)

Output equation y = Cx +Du with D = 0 has Laplace transform

Y (s) = Cx(s) (6.12)

which can be used to get
Y (s) = C(sI−A)

−1
BU(s) (6.13)

from which we get the transfer function as

Y (s)

U(s)
= C(sI−A)

−1
B (6.14)
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Example

The transfer function of the spring-mass-damper system is

X(s)

F (s)
=

1/m

s2 + (b/m)s+ (k/m)

and if we let m = 1, b = 2, k = 4 we get

X(s)

F (s)
=

1

s2 + 2s+ 4

The corresponding state-variable description is

A =

[
0 1
−4 −2

]
,B =

[
0
1

]
,C =

[
1 0

]
, D = 0.

Then

sI−A =

[
s −1
4 s+ 2

]
and

(sI−A)−1 =

[
s+ 2 1
−4 s

]
s(s+ 2) + 4

The transfer function is given by

C(sI−A)
−1

B =

[
1 0

] [ s+ 2 1
−4 s

] [
0
1

]
s(s+ 2) + 4

which yields
X(s)

F (s)
=

1

s2 + 2s+ 4
.

Numerical conversion between state-space form to transfer function form can be easily done with
MATLAB, as will be shown later.

6.3 Different State-Space Representations

In Section 6.2 we mentioned that there are an infinite number of choices for system state, and
corresponding system matrices. This section presents some standard representations. First comes the
idea of state equation transformations, followed by several different representations. The usefulness
of some of these descriptions may not be immediately apparent. Where we need a specific system,
we will consider the third-order transfer function

Y (s)

U(s)
=

b2s
2 + b1s+ b0

s3 + a2s2 + a1s+ a0
=
b(s)

a(s)
(6.15)
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6.3.1 State Variable Transformation

Given state equation
ẋ = Ax + Bu (6.16)

and output equation
y = Cx +Du (6.17)

let a new state vector z be defined by
z = Tx (6.18)

where T is a n×n non-singular matrix. Note that T must be invertible to permit mapping between
both state vectors, thus

x = T−1z (6.19)

Now, starting with the new state z, we have

ż = Tẋ = TAx + TBu (6.20)

then substituting for x yields
ż = TAT−1z + TBu (6.21)

and the output equation is
y = CT−1z +Du. (6.22)

Although eigenvalues and eigenvectors will described in Section 6.3.3, the eigenvalues of original
system matrix A and “new” matrix TAT−1 are the same!. For this reason these matrices are called
“similar.”

6.3.2 Control Canonical Form

Introduce a variable v which relates polynomials a(s) and b(s) as shown in Figure 6.3(a). The
transfer function from u to v is

V (s)

U(s)
=

1

a(s)
=

1

s3 + a2s2 + a1s+ a0
(6.23)

or
...
v +a2v̈ + a1v̇ + a0v = u (6.24)

which may be written
...
v= −a2v̈ − a1v̇ − a0v + u (6.25)

A block diagram illustrating (6.25) is shown in Figure 6.3(b).

The output y is formed by
Y (s) = b(s)V (s) (6.26)

which means
y = b2v̈ + b1v̇ + b0v (6.27)
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u v y1

a(s)
b(s)

(a) Introduction of v.

1

s

1

s

1

s

a0

a1

a2

u ˙̇v̇ ˙̇v v̇ v

- -
-

+

(b) Addition of a terms.

1

s

1

s

1

s

a0

a1

a2

u ˙̇v̇

- -
-

+
b0

b1

b2
+

+ +

y

x3 x2 x1

(c) Addition of b terms.

Figure 6.3: Control Canonical Form.

The block diagram with the output terms added is shown in Figure 6.3(c).

The outputs of the integrators are the state variables. Taking the state variables as

x1
∆
= v, x2

∆
= v̇, x3

∆
= v̈ (6.28)

we obtain

ẋ1 = x2 (6.29)

ẋ2 = x3 (6.30)

ẋ3 = −a0x1 − a1x2 − a2x3 + u (6.31)

thus the system matrices are

A =

 0 1 0
0 0 1
−a0 −a1 −a2

 ,B =

 0
0
1

 ,C =
[
b0 b1 b2

]
, D = 0 (6.32)

The form of (6.32) is known as control canonical form. It is especially useful in finding state-
variable feedback laws (not covered in this chapter). It is a minimal form, and is the same as shown
in equation (6.6).

Observer Canonical A similar form, observer canonical, is useful when designing an observer, or
state estimator. This form can be derived in a similar manner to control canonical form, one version
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of the result is:

A =

 −a2 1 0
−a1 0 1
−a0 0 0

 ,B =

 b2
b1
b0

 ,C =
[

1 0 0
]
, D = 0. (6.33)

With the observer canonical form the output y = x1.

6.3.3 Diagonal (modal or decoupled) Form

The simplest representation of a state-space system occurs when the state equation are decoupled,
that is, when system matrix A is in diagonalized form, in the form

Λ =


λ1

λ2

. . .

λn

 (6.34)

Eigenvalues and Eigenvectors Given matrix A, vector x is an eigenvector if

Ax =λx (6.35)

where λ is a scalar eigenvalue. These exceptional vectors get shrunk or reversed by A but they
don’t change direction. The relationship between the state variables stays fixed. Eigenvectors are
commonly called mode shapes, and they represent the natural response modes of the system.

To find the eigenvalues write the equation as (A−λI)x = 0. For this equation to have a non-trivial
solution for x, matrix A− λI must be singular, therefore it must have a zero determinant, and

|A− λI| = 0 (6.36)

This is also the characteristic equation of the system, and poles and eigenvalues are the same thing.
An nth order system will (usually) have n eigenvalues λ1. . .λn.

To find the ith eigenvector, solve the system

(A− λiI)xi = 0 (6.37)

for eigenvector xi. MATLAB function eig is used for finding eigenvalues and eigenvectors.

Diagonalization The matrix of eigenvectors are just what we need to diagonalize matrix A. We
need transformation matrix T such that

Λ = TAT−1
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Multiply A times the matrix S of its eigenvectors,

AS = A[x1 · · ·xn] = [λ1x1 · · ·λnxn] (6.38)

then write this as

[λ1x1 · · ·λnxn] = [x1 · · ·xn]

 λ1

. . .

λn

 = SΛ (6.39)

So then we have

AS = SΛ→ Λ = S−1AS (6.40)

Note that by the format of equation (6.21) the diagonalizing transform is T = S−1, where S is the
matrix whose columns are the eigenvectors.

The modal form is especially useful in structural dynamics, where there is concern for structural
mode shapes and natural frequencies (square root of eigenvalues). MATLAB function canon() with
the modal option will diagonalize a matrix, and return the transformation T that it used.

6.4 MATLAB Tools

Many MATLAB functions exist for handling state-space systems, some common ones will be de-
scribed in this section.

6.4.1 Transform↔State-Space

Changing between transform and state-space domains is done with tf2ss and ss2tf. These work
identically in the continuous and discrete domains.

tf2ss. This function converts a transform-based form to state space representation. The A,B,C,D
matrices are returned in (upper) control canonical form, slightly different than the (lower) control
canonical form of Section 6.3.2. A transformation may be used to convert between these forms. This
is illustrated by the following example. Consider transfer function

G(s) =
s2 + 5s+ 6

s3 + 2s2 + 3s+ 4

This may be converted to state-space form by
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>>num = [0 1 5 6];

>>den = [1 2 3 4];

>>[A,B,C,D] = tf2ss(num,den)

A = -2 -3 -4

1 0 0

0 1 0

B = 1

0

0

C = 1 5 6

D = 0

To transform this to lower canonical form one can use the change of state

z = Tx.

with matrix T given by

>>T = flipud(eye(3))

T = 0 0 1

0 1 0

1 0 0

It is easily seen that T simply reverses the order of the state variables. To transform the state-space
model use the ss2ss function:

>>[Al,Bl,Cl,Dl] = ss2ss(A,B,C,D,T)

Al = 0 1 0

0 0 1

-4 -3 -2

Bl = 0

0

1

Cl = 6 5 1

Dl = 0

where the state-space is now in the format of equation (6.32).
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ss2tf. This just goes the other way. For the previous example, using either canonical form (all
state-space forms must yield the same input-output model):

>>[num,den] = ss2tf(A,B,C,D)

num = 0 1.0000 5.0000 6.0000

den = 1.0000 2.0000 3.0000 4.0000

6.4.2 Eigenvalues, Eigenvectors, Diagonalization

Matlab function eig finds the eigenvalues and eigenvectors. The eigenvectors will be different de-
pending on the form of the state equations, but the eigenvalues will always be the same. Considering
the previous example, using the lower canonical form

>>[Vectors,Values] = eig(Al)

Vectors = 0.2995 -0.1781 - 0.2754i -0.1781 + 0.2754i

-0.4944 0.4572 - 0.2274i 0.4572 + 0.2274i

0.8160 0.2718 + 0.7469i 0.2718 - 0.7469i

Values = -1.6506 0 0

0 -0.1747 + 1.5469i 0

0 0 -0.1747 - 1.5469i

Function eig returns a matrix whose columns are the eigenvectors, and a matrix whose diagonal
elements are the eigenvalues. For a system matrix with real coefficients the eigenvalues will always
be either real or complex conjugate pairs. The eigenvalues are the roots of the denominator of the
original G(s).

We showed that the transformation needed to diagonalize the system matrix was the inverse of the
eigenvector matrix. To verify this,

>>Tdiag = inv(Vectors)

Tdiag = 1.7700 - 0.0000i 0.2552 - 0.0000i 0.7304 - 0.0000i

0.4032 + 1.1137i 0.9842 + 0.4976i 0.4483 - 0.1073i

0.4032 - 1.1137i 0.9842 - 0.4976i 0.4483 + 0.1073i

Now use transformation Tdiag to change state using ss2ss:
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>>[Ad,Bd,Cd,Dd] = ss2ss(Al,Bl,Cl,Dl,Tdiag)

Ad = -1.6506 - 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i

0.0000 + 0.0000i -0.1747 + 1.5469i 0.0000 - 0.0000i

0.0000 - 0.0000i 0.0000 + 0.0000i -0.1747 - 1.5469i

Bd = 0.7304 - 0.0000i

0.4483 - 0.1073i

0.4483 + 0.1073i

Cd = 0.1412 + 0.0000i 1.4891 - 2.0425i 1.4891 + 2.0425i

Dd = 0

canon. MATLAB function canon transforms the state equations into a modal “canonical” form in
which the real eigenvalues appear on the diagonal, and complex eigenvalues appear in a 2× 2 block
on the diagonal of the A matrix. For a system with eigenvalues λ1, σ ± jω, the modal A matrix is

A =

 λ1 0 0
0 σ ω
0 −ω σ


For the original A,B,C,D system,

>>[Am,Bm,Cm,Dm,Tmodal] = canon(A,B,C,D,’modal’)

Am = -1.6506 0.0000 -0.0000

0.0000 -0.1747 1.5469

-0.0000 -1.5469 -0.1747

Bm = -0.7304

-0.6526

0.6511

Cm = -0.1412 0.9591 2.3387

Dm = 0

Tmodal = -0.7304 -0.2552 -1.7700

-0.6526 -0.1840 1.4743

0.6511 2.1980 1.8541

where Tmodal is the transformation matrix used to produce the modal form.
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6.4.3 Dynamic Response of State-Space Forms

There is a rich set of MATLAB functions to obtain the dynamic response of state-space systems.
Two of the three functions shown below require an LTI-format model, while the third uses the
separate A,B,C,D matrices.

Refer to Section 2.8 for a brief discussion of LTI models. To create an LTI model from a state-space
system description, use the ss command:

>> help ss

SS Creates state-space model or converts model to state space.

SYS = SS(A,B,C,D) creates a SS object SYS representing the

continuous-time state-space model

dx/dt = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

[Y,T,X] = STEP(SYS) Step response of continuous-time linear systems. The syntax shown returns
the output and state time response in the matrices Y and X respectively. No plot is drawn on
the screen. The matrix Y has as many columns as there are outputs, and LENGTH(T) rows.
The matrix X has as many columns as there are states. If the time vector is not specified,
then the automatically determined time vector is returned in T. A desired time vector T can
also be specified as the last argument (after SYS) in the argument list of STEP.

[Y,T,X] = INITIAL(SYS,X0) Initial condition response of continuous-time linear systems. The
syntax shown returns the output and state responses (Y and X), and the time vector (T).
No plot is drawn on the screen. The matrix Y has as many columns as outputs and one row
for element in T. Similarly, the matrix X has as many columns as states and length(T) rows.
Again, a desired time vector T can be given as the last argument, after the initial condition
X0.

[Y,X] = LSIM(A,B,C,D,U,T) Simulation of continuous-time linear systems to arbitrary inputs.
The syntax shown returns the output and state time history in the matrices Y and X. Each
row of U corresponds to a new time point, and U must have LENGTH(T) rows. The time
vector T must be regularly spaced. LSIM(A,B,C,D,U,T,X0) can be used if initial conditions
exist.

For more information on these functions invoke the MATLAB help feature.

Homework Problems

Problem 1.

In this problem you are going to write the state equations to simulate the dynamics of a DC motor
driving a rotary inertia through a gear train, as shown in the sketch below. The equations that
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DC
motor

Load
Inertia

n

θm

θ l

ea Jl , Bl

Figure 6.4: DC motor driving inertia.

model the dynamic behavior of a permanent-magnet DC motor are

ea − iaRa − La
dia
dt
−Kbωm = 0

τ = Ktia

τ −Bmωm = Jmω̇m

where ea is applied armature voltage, ia is armature current, Ra is armature resistance, La is
armature inductance, Kb is the back emf constant, ωm is motor speed, τ is generated torque, Kt is
motor torque constant, Bm is motor viscous friction coefficient, and Jm is motor armature inertia.

Recall that when a load inertia (and damping) is connected to a motor via a gear train, the load
inertia the motor “sees” is reduced by a factor of n2, where n is the gear ratio (n > 1 for a speed
reducing gear train).

The specifications for the motor (taken from the manufacturer’s data sheet) are:

Jm = 1.54 ∗ 10−6 kg-m2

Bm = 2.7e− 3
mN-m

rad/s

La = 0.69 mH

Ra = 1.53 Ω

Kt = 22.3
mN-m

A

Kb = 0.0223
V

rad/s

The load inertia is a disk made of aluminum with the following dimensions:

r = 100 mm

thickness = 10 mm

viscous damping = 4
mN-m

rad/s

gear ratio n = 50
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(a) Choosing the state variables to be x1 = ia, x2 = θ, and x3 = θ̇ = ω, write the state equations
for the motor alone. Simulate the motor response to a voltage pulse of magnitude 10V and
duration 0.1 second. Simulate for a duration of 0.2 seconds. Plot motor current (A), motor
velocity (rpm), and motor displacement (revolutions) vs time. What is the maximum armature
current? How many revolutions did the motor rotate?

(b) Now add the dynamics of the load, but ignore the inertia of the gears (it was not given anyway!).
Perform the same simulation as in (a). Plot motor current (A), load velocity (degrees/sec),
and load displacement (degrees) vs time.

Problem 2.

Consider the two degree-of-freedom system shown below. Let m = 1 and k = 1. Write state

k 2k

m m f (t)

x1 x2

Figure 6.5: Coupled spring-mass system.

equations for this system using

x =


x1

ẋ1

x2

ẋ2


By diagonalizing the system, investigate the eigenvalues (natural frequencies) and eigenvectors (mode
shapes).
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Chapter 7

Digital Controller Design using
State Space Methods

7.1 Introduction

The state variable modeling approach presented in the previous chapter can also be applied in the
discrete domain. We will first examine state-space discrete models, then look at state feedback
controls laws, in which the control force u is a linear combination of the measured state variables.
Using state feedback, the system poles can be placed arbitrarily. Since the entire state vector is
usually not accessible, a state estimator must be developed. It will be shown that the poles of the
overall system are those of the control law plus those of the estimator. Introduction of the reference
input will be the final chapter topic.

7.2 Canonical State-Space Forms from Transfer Function

It is easy to get a canonical discrete state-space model if you already have a discrete transfer function.
That is not the typical path to follow when modeling, but it is worthwhile to discuss.

Consider the transfer function given by

G(z) =
Y (z)

U(z)
=
b0 + b1z

−1 + b2z
−2 + b3z

−3

1− a1z−1 − a2z−2 − a3z−3
=
b(z)

a(z)
(7.1)

where the presence of b0 indicates a direct “feed-through” term. This was included because it is
often present in discrete-domain controllers.

Polynomials a(z) and b(z) can be separated using the block diagram of Figure 7.1(a) and the
introduction of intermediate variable vk with transform V (z). Thus

129
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U(z ) V(z) Y (z)1

a(z)
b(z)

(a) Introduction of v.

a1

a2

+

a3

+ +
+

z−1 z−1 z−1
uk

vk vk −1 vk −2
vk −3

(b) Addition of a terms.

a1

a2

+

b0

b1

b2

+

+ +

x3
x2x1

b3

++

uk vk

a3

yk

z−1 z−1 z−1

(c) Addition of b terms.

Figure 7.1: Control Canonical Form.

V (z) =
U(z)

a(z)
or U(z) = a(z)V (z)

and

uk = vk − a1vk−1 − a2vk−2 − a3vk−3

or

vk = a1vk−1 + a2vk−2 + a3vk−3 + uk

and the block diagram in Figure 7.1(b) results. The delay elements are analogous to integrators for
continuous systems.

To form the output yk use Y (z) = b(z)V (z), which leads to

yk = b0vk + b1vk−1 + b2vk−2 + b3vk−3.

which is shown in the block diagram in Figure 7.1(c)

Discrete State Equations. To avoid confusion with the continuous system and input matrices,
we’ll use symbols Φ and Γ instead of A and B. The discrete state and output equations are:

x(k + 1) = Φx(k) + Γu(k) (7.2)

y(k) = Cx(k) +Du(k) (7.3)
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Choosing state variables xi as shown in Figure 7.1(c) leads to state equations

x1(k + 1) = a1x1(k) + a2x2(k) + a3x3(k) + u(k)

x2(k + 1) = x1(k)

x3(k + 1) = x2(k)

and corresponding system and input matrices

Φ =

 a1 a2 a3

1 0 0
0 1 0

 ,Γ =

 1
0
0

 . (7.4)

This control canonical form is the same form MATLAB returns when doing a tf2ss transformation.

The output equation is
Y (z) = b(z)V (z)

which leads to
yk = b0vk + b1vk−1 + b2vk−2 + b3vk−3

where vk−1, vk−2, vk−3 are state variables x1, x2, x3. However, the b0 term complicates things some-
what. The quantity vk is not a state variable, but is

vk = a1vk−1 + a2vk−2 + a3vk−3 + uk

= a1x1(k) + a2x2(k) + a3x3(k) + u(k)

where the “()” sampling index notation is used to avoid confusion with the state variable subscripts.
Substitition for v(k) yields output equation

y(k) = [b1 + a1b0]x1(k) + [b2 + a2b0]x2(k) + [b3 + a3b0]x3(k)

thus output and feedforward matrices are

C =
[
b1 + a1b0 b2 + a2b0 b3 + a3b0

]
, D = b0 (7.5)

The state-space model of a discrete system is then given by equations (7.2) and (7.3) with control
canonical matrices given by (7.4) and (7.5). If there is no feedforward term b0 the output matrix is
C =

[
b1 b2 b3

]
and of course D = 0.

7.3 Solution to the State Equation

If we intend to use state-variable modeling, it is unnecessary to find a transfer function G(z) to
get the discrete state-space form. A discrete-time model generates the behavior of the system from
sample to sample, and to get this we must solve the continuous state equation. Consider the state
equation

ẋ = Ax(t) + Bu(t). (7.6)

The right-hand side of (7.6) consists of two parts, the first of these, Ax(t), is the homogeneous part
while the second, Bu(t), is the input portion.
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7.3.1 Homogeneous solution

The homogeneous (no input) solution to (7.6) is given by

xh(t) = eA(t−t0)x(t0) (7.7)

where the matrix exponential is

eA(t−t0) = I + A(t− t0) + A2 (t− t0)2

2!
+ A3 (t− t0)3

3!
+ · · · (7.8)

=

∞∑
k=0

Ak (t− t0)k

k!
(7.9)

By differentiating (7.7) with respect to t one can show that (7.9) is a solution to the homogeneous
problem.

MATLAB has the matrix exponential function available for numerical evaluation as expm.

Note that although the initial state has been given at time t = t0, initial conditions are more
commonly given at t = 0.

Properties of the Matrix Exponential. The matrix exponential function has properties which
we will need in the solution of the inhomogeneous problem.

Given times t1 and t2, we have

x(t1) = eA(t1−t0)x(t0)

and

x(t2) = eA(t2−t0)x(t0).

The initial time t0 is arbitrary, and we can write

x(t2) = eA(t2−t1)x(t1).

Substituting for x(t1) gives

x(t2) = eA(t2−t1)eA(t1−t0)x(t0)

and equating the two solutions for x(t2) we get

eA(t2−t0) = eA(t2−t1)eA(t1−t0) (7.10)

Note especially that if t2 = t0, then

I = e−A(t1−t0)eA(t1−t0).

Thus we can obtain the inverse of eAt simply by changing the sign of t.
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7.3.2 Particular solution

Assume the solution to be of the form

xp(t) = eA(t−t0)v(t) (7.11)

where v(t) is a vector of variable parameters to be determined. Substituting (7.11) into (7.6), we
obtain

AeA(t−t0)v + eA(t−t0)v̇ = AeA(t−t0)v + Bu,

and inverting by changing the sign of the exponent, we can solve for v as

v̇(t) = e−A(t−t0)Bu(t).

If the input u(t) is zero for t < t0, we can integrate v̇ from t0 to t to get

v(t) =

∫ t

t0

e−A(t−t0)Bu(τ)dτ.

Thus, from (7.11), the particular solution is

xp(t) = eA(t−t0)

∫ t

t0

e−A(t−t0)Bu(τ)dτ.

and simplifying using (7.10) we get the particular solution as

xp(t) =

∫ t

t0

eA(t−τ)Bu(τ)dτ. (7.12)

The complete solution is the sum of (7.7) and (7.12),

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ. (7.13)

The reason for solving the continuous state equation was to use it from one sample to the next to
obtain a discrete-time state-space model. Therefore, let t0 = kT and t = kT + T , so we have

x(kT + T ) = eATx(kT ) +

∫ kT+T

kT

eA(kT+T−τ)Bu(τ)dτ. (7.14)

Note that since u(τ) is continuous this result is independent of the type of hold used during the
sampling period. Assuming a zero-order hold (ZOH), u is constant over a sampling interval,

u(τ) = u(kT ), kT ≤ kT + T.

To simplify the solution, let η be defined as

η
∆
= kT + T − τ.
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Then we have

x(kT + T ) = eATx(kT ) +

∫ T

0

eAηdηBu(kT ). (7.15)

If we define

Φ
∆
= eAT , (7.16)

Γ
∆
=

∫ T

0

eAηdηB, (7.17)

we have from (7.15) the discrete state equation (and accompanying output equation),

x(k + 1) = Φx(k) + Γu(k) (7.18)

y(k) = Cx(k) (7.19)

which we got in Section 7.2.

7.3.3 Calculating system and output matrices

Both matrices Φ and Γ can be found using the matrix exponential series. Let the series for n × n
matrix Ψ be

Ψ
∆
= I +

AT

2!
+

A2T 2

3!
+ · · ·

then from the definition of the matrix exponential Φ is given by

Φ = I + ATΨ (7.20)

and the Γ integral in (7.17) can be evaluated term-by-term to give

Γ = ΨTB (7.21)

The (overloaded) MATLAB function c2d works on state-space models, too, so that is an easy way
to effect the discretization in the state variable domain. We will use the ‘zoh’ option.

SYSD = C2D(SYSC,Ts,METHOD) converts the continuous-time LTI

model SYSC to a discrete-time model SYSD with sample time Ts.

The string METHOD selects the discretization method among the

following:

’zoh’ Zero-order hold on the inputs

’foh’ Linear interpolation of inputs (triangle appx.)

’imp’ Impulse-invariant discretization

’tustin’ Bilinear (Tustin) approximation

’prewarp’ Tustin approximation with frequency prewarping.

The critical frequency Wc (in rad/sec) is specified

as fourth input by

SYSD = C2D(SYSC,Ts,’prewarp’,Wc)

’matched’ Matched pole-zero method (for SISO systems only).

The default is ’zoh’ when METHOD is omitted.
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7.4 Control Law Design

One of the attractive features of state-space design methods is that the procedure consists of two
independent steps. The first step assumes that we can measure all the states for control purposes,
e.g. the state is accessible. In general this is not true, nevertheless we will formulate a control law
with this assumption. The second step is to design a state “estimator” (sometimes referred to as
an “observer”) which estimates the entire state vector based on a measurement of the (accessible)
output given by

y = Cx +Du (where D is usually zero for physical systems)

The final controller will consist of the combination of the control law and the estimator, with the
control computed using the estimated states.

The most general linear state control law is simply a linear combination of all state variables, that
is:

u = −Kx = −
[
K1 K2 · · · Kn

]

x1

x2

...
xn

 (7.22)

This control law does not provide for a reference input to the system, hence r = 0, and such a system
is a regulator.

Recall that the plant discrete state equation is

x(k + 1) = Φx(k) + Γu(k) (7.23)

Substituting (7.22) into (7.23) we get

x(k + 1) = Φx(k)− ΓKx(k). (7.24)

Taking the z-transform of (7.24) produces

(zI−Φ + ΓK)X(z) = 0

For a non-trivial solution for X(z) to exist for the above equation, the determinant must be zero,
that is,

|zI−Φ + ΓK| = 0 (7.25)

Equation (7.25) is the characteristic equation of the plant+control law.

7.4.1 Pole Placement

We will use the method of pole placement, since our control law has as many unknown parame-
ters (the Ki), we are able to place the closed-loop poles (eigenvalues) arbitrarily. Note that this
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places a burden on the designer to select reasonable closed-loop pole locations. Unlike transform-
based design—which often involves iteration—the full state feedback, pole placement approach has
guaranteed success.

Let the desired pole locations be
zi = p1, p2, . . ., pn

then the characteristic equation is

αc(z) = (z − p1)(z − p2)· · ·(z − pn) = 0 (7.26)

Since (7.25) and (7.26) are both characteristic equations of the controlled system, they must be
identical. Since equation (7.26) is known (we pick the pole locations) and equation (7.25) is symbolic,
we can equate coefficients of like powers of z in both equations, and n simultaneous equations for
the Ki will result.

Example

Consider the plant given by

G(s) =
Y (s)

U(s)
=

1

s2

which represents a pure inertia. With two poles at the origin, this plant is unstable. Suppose we
wish to design a control law for this plant so the poles have

ζ = 0.707

ωn = 10 rad/sec

which corresponds to poles at s = −7.07± j7.07.

Pick a sample period of T = 0.1 second, this is about six times the desired natural frequency. Letting
the state vector be

x =

[
x1

x2

]
=

[
y
ẏ

]
the state equations are

ẋ1 = x2

ẋ2 = u

and the output is simply y = u, hence the continuous state-space matrices are

A =

[
0 1
0 0

]
,B =

[
0
1

]
,C =

[
1 0

]
, D = 0.

Discretizing the system at T = 0.1 second, we obtain

Φ =

[
1 0.1
0 1

]
,Γ =

[
0.005
0.1

]
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Using state feedback law u(k) = −Kx(k), the controlled system state equation is

x(k + 1) = [Φ− ΓK]x(k)

where
K =

[
K1 K2

]
The characterstic equation of the controlled system is given by the determinant

|zI−Φ + ΓK| = 0

and after some algebra we obtain the symbolic characterstic equation as

z2 + (0.005K1 + 0.1K2 − 2)z + (0.005K1 − 0.1K2 + 1) = 0

The desired pole locations in the s plane can be mapped into the z plane using z = esT , and we
obtain

z = 0.3749± j0.3203

thus the numerical form of the desired characteristic polynomial is

αc(z) = z2 − 0.7499z + 0.2432

Equating coefficients of like powers of z of both characteristic polynomials gives the two simultaneous
equations

0.005K1 + 0.1K2 = 1.2501

0.005K1 − 0.1K2 = −0.7568

from which we obtain

K1 = 49.33

K2 = 10.03

The feedback law is negative position and velocity feedback, since state variables x1 and x2 are
position and velocity. . . assuming that the output is displacement, that is!

The controlled system dynamics are

x(k + 1) = [Φ− ΓK]x(k)

where Φ− ΓK is

Φ− ΓK =

[
0.7533 0.0498
−4.9331 −0.0035

]

Simulation of the controlled system’s response from initial condition x0 =

[
1
1

]
yields the plot

shown in Figure 7.2.
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Figure 7.2: Response of controlled inertia plant from initial condi-
tion x(0) = [1 1]T .

7.4.2 Selecting System Pole Locations

While the selection of the desired system pole locations is highly application-specific, there are some
guidelines. Generally, it is unwise to expect the closed-loop system to respond dramatically faster
than the slowest component in the loop. Feedback control can improve system dynamics (overshoot,
stability, etc.), but requesting closed-loop response that is much faster than the slowest component
response (often the plant) may saturate one or more components. Simulation is always beneficial to
explore the limits of system performance.

7.4.3 Controllability and the Control Canonical Form

The algebra for finding the state feedback gain matrix K is especially simple if the system matrices
happen to be in control canonical form. Recall for a third order system (with no feed-through term
b0), this form was:

Φc =

 a1 a2 a3

1 0 0
0 1 0

 ,Γc =

 1
0
0

 ,Cc =
[
b1 b2 b3

]
. (7.27)
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The characteristic polynomial of equation (7.27) is z3 − a1z
2 − a2z − a3. The key idea here is that

the elements of the first row of Φc are exactly the coefficients of the characteristic polynomial of the
system. If we now form the closed-loop system matrix Φc − ΓcK, we find

Φc − ΓcK =

 a1 −K1 a2 −K2 a3 −K3

1 0 0
0 1 0

 . (7.28)

By inspection, the characteristic equation of (7.28) is

z3 − (a1 −K1)z2 − (a2 −K2)z − (a3 −K3) = 0

Thus, if the desired pole locations result in the characteristic equation

z3 − α1z
2 − α2z − α3 = 0,

the necessary values for the control gains are

K1 = a1 − α1, K2 = a2 − α2, K3 = a3 − α3. (7.29)

This leads to a design method: Given an arbitrary (Φ,Γ), and a desired characteristic equation
α(z) = 0, convert (by redefinition of the state vector) to control canonical form (Φc,Γc), and solve
for the gain by (7.29). Since this gain is for states in the control canonical form, we must express
the result back in terms of the original state vector.

Is it always possible to find the control canonical form? Yes, almost always, but there are certain
pathological systems called “uncontrollable” for which no control will give arbitrary root locations.
These systems have certain modes or subsystems which are unaffected by the control.

If all roots are distinct, the system can be diagonalized using the matrix of eigenvectors as discussed
in the previous chapter. The system is then

x(k + 1) =


λ1

λ2

. . .

λn

x(k) +


Γ1

Γ2

...
Γn

u(k) (7.30)

and explicitly exhibits the criterion for controllability: when in this form, no element of Γ can be
zero. If any Γ element were zero, no control would influence that mode directly and the associated
state would remain uncontrolled.

7.4.4 Ackermann’s Rule and a Test for Controllability

There is a mathematical test for controllability, although the details will not be presented here. The
test is:
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The controllability matrix C must be non-singular, where

C =
[

Γ ΦΓ Φ2Γ · · · Φn−1Γ
]
.

If C is non-singular, there is a convenient formula derived by Ackermann (derivation not shown)
which may be used to find the state feedback gain matrix K,

K =
[

0 · · · 0 1
] [

Γ ΦΓ Φ2Γ · · · Φn−1Γ
]−1

αc(Φ). (7.31)

αc(z) is just the desired system characteristic polynomial obtained from

αc(z) = (z − p1)(z − p2)· · ·(z − pn)

Note that in equation (7.31) matrix Φ is the argument of the characteristic polynomial αc.

Example

Consider the dual pendula on a cart shown in Figure 7.3. If the position of the cart u can be

u

l1

l2θ1

θ2

Figure 7.3: Dual pendula on cart.

specified, can both pendula be balanced? That is, is this system controllable? The equations of
motion for the pendula are

θ̈1 =
g

l1
θ1 −

1

l1
ü

θ̈2 =
g

l2
θ2 −

1

l2
ü

If we choose state vector

x =


x1

x2

x3

x4

 =


θ1

θ̇1

θ2

θ̇2
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and let the input be ü for simplicity, we have system matrix A and input matrix B as

A =


0 1 0 0
g/l1 0 0 0

0 0 0 1
0 0 g/l2 0

 ,B =


0

−1/l1
0

−1/l2


The controllability matrix C for continuous systems is exactly the same as for discrete,

C =
[

B AB A2B · · ·
]

and C for the dual pendula system is

C =


0 −1/l1 0 −g/l21

−1/l1 0 −g/l21 0
0 −1/l2 0 −g/l22

−1/l2 0 −g/l22 0


It can be shown that if l1 = l2 the rank of C is 3, but if l1 6= l2 the rank of C is 4. Hence if the two
pendula are the same length, this system is uncontrollable.

7.4.5 MATLAB Tools

If numerical values are available, here are two MATLAB functions that can assist control law design:
place and ctrb:

place. Ackermann’s rule is invoked by function place:

PLACE Pole placement technique

K = PLACE(A,B,P) computes a state-feedback matrix K such that

the eigenvalues of A-B*K are those specified in vector P.

No eigenvalue should have a multiplicity greater than the

number of inputs.

[K,PREC,MESSAGE] = PLACE(A,B,P) returns PREC, an estimate of how

closely the eigenvalues of A-B*K match the specified locations P

(PREC measures the number of accurate decimal digits in the actual

closed-loop poles). If some nonzero closed-loop pole is more than

10% off from the desired location, MESSAGE contains a warning

message.
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ctrb. Form the controllability matrix.

CTRB Compute the controllability matrix.

CO = CTRB(A,B) returns the controllability matrix [B AB A^2B ...].

CO = CTRB(SYS) returns the controllability matrix of the

state-space model SYS with realization (A,B,C,D). This is

equivalent to CTRB(sys.a,sys.b).

Controllability may be checked by finding the rank of the controllability matrix C. If C has less than
full rank, the system is uncontrollable.

7.4.6 Poles and Zeros

It is worthwhile to consider the poles and zeros of a system using the state-space model. Consider
the plant state and output equations

x(k + 1 = Φx(k) + Γu(k)

y(k) = Cx(k),

which may be z-transformed, giving

[zI−Φ]X(x) = ΓU(z)

Y (z) = CX(z)

From these two equations we can solve for the transfer function

Y (z)

U(z)
= C[zI−Φ]−1Γ.

Pole locations are values of z such that the plant can have an output with no input, this is just the
natural response. This can only happen if

|zI−Φ| = 0,

which is the characteristic equation of the plant. Roots of this equation are the poles. We have used
this approach in solving for the control gains.

Zeros are values of z such that the output y is zero with a non-zero input and state vector x. This
can be expressed in matrix form,[

zI−Φ −Γ
C 0

] [
X(z)
U(z)

]
=

[
0

Y (z)

]
=

[
0
0

]
For a non-zero state X(z) and input U(z), the following determinant must be zero:∣∣∣∣ zI−Φ −Γ

C 0

∣∣∣∣ = 0 (7.32)

Then equation (7.32) will yield the zeros. Note that with pole placement we have no control of the
eventual locations of the system zeros.
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Homework Problem Set 1

Problem 1.

For the example of Section 7.4, where G(s) = 1/s2, compute Φ and Γ using the series expansions
of equations (7.20) and (7.21). Verify with the example.

Problem 2.

Design a state feedback control law for the DC motor + inertia of Chapter 6, Problem 1. Pick
desired system pole locations consistent with the physical limitations of the system. Simulate the
system’s response to an initial condition.

7.4.7 More on Controllability

We stated in Section 7.4.4 that a system was controllable if the matrix

C ∆
=
[

Γ ΦΓ · · · Φn−1Γ
]

is nonsingular. Let us examine controllability a little more deeply. Consider the statement

The system (Φ,Γ) is controllable if for every xi and xf there is a finite N and a set of
controls u(0), u(1) . . . u(N) such that if the system has state xi at k = 0, it is forced to
state xf at k = N .

The system state equation is
x(k + 1) = Φx(k) + Γu(k).

Solving this equation for a few steps, we find

x(1) = Φxi + Γu(0)

x(2) = Φx(1) + Γu(1)

= Φ2xi + ΦΓu(0) + Γu(1)

...

x(N) = ΦNxi +
[

Γ ΦΓ · · · ΦN−1Γ
]  u(N − 1)

...
u(0)


If x(N) is to equal xf , then we must be able to solve the equations

[
Γ ΦΓ · · · ΦN−1Γ

]

u(N − 1)
u(N − 2)

...
u(0)

 = xf −ΦNxi
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for the control sequence u(k).

The “coefficient” matrix is just our controllability matrix C, and it has n rows and N columns. If
N < n we cannot find a solution for general xf . And if N > n we add additional columns, and
solution existence is not readily apparent. But note that Γ can be factored out of C to the right, we
are left with increasing powers of Φ, as[

I Φ Φ2 · · ·
]
.

But the Cayley-Hamilton theorem says (in a nutshell) that a matrix Φ satisfies its own characteristic
polynomial, this can be rearranged to say that Φn is a linear combination of lower powers of Φ,
thus the additional columns if N > n do not increase the rank. Therefore we have a solution for the
control sequence if and only if the rank of C is n.

7.5 State Estimator Design

The state feedback control law as used in the previous section presumed that the state was accessible.
In fact, this is not likely to be true, and the missing portion of the state (or the entire state) needs
to be constructed from the measured output. If the state vector is x, the state estimate will be x̂,
and the control law will use the estimate, u = −Kx̂.

NOTE: In this section we make a distinction between output y and measurable output ym. The
two are usually the same, but there could be a situation in which they are different. Measurable
output ym has with it a corresponding Cm output matrix.

7.5.1 Prediction Estimator

Since we have a model of the plant dynamics, one way to estimate the state is just use this model,

x̂(k + 1) = Φx̂(k) + Γu(k) (7.33)

where x̂ denotes the state estimate. The input u(k) is known, as are Φ and Γ, so if the state estimate
can be accurately initialized, x̂(0) = x(0), this should work. Let’s see. . .

Figure 7.4 shows this “open-loop” estimator. Define the estimator error by

x̃
∆
= x− x̂ (7.34)

and it can be shown by subtracting (7.33) from the plant state equation (7.2) that

x̃(k + 1) = Φx̃(k). (7.35)

This says that the dynamics of the estimator error are identical to those of the uncontrolled plant!
If there is any initial error in the state estimate, that error will propagate with dynamics identical
to those of the uncontrolled plant. Needless to say, this is undesirable.
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Figure 7.4: Open-loop estimator.
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Figure 7.5: Closed-loop estimator.

The solution is to use the difference between the measured output y and the estimated output ŷ to
correct the estimator. This is shown in Figure 7.5. The estimated output is ŷm(k) = Cmx̂(k), and
the difference equation for the closed-loop estimator is

x̂(k + 1) = Φx̂(k) + Γu(k) + L[ym(k)−Cmx̂(k)] (7.36)

This is called a prediction estimator because the state estimate x̂(k+ 1) is one sample ahead of the
measurement ym(k). Matrix L contains the estimator feedback gains which will (hopefully) improve
estimator performance.

The difference equation for estimator error can again be found by subtracting equation (7.36) from
(7.2), and we get

x̃(k + 1) = [Φ− LCm]x̃(k) (7.37)

The dynamics of this system are given by [Φ− LCm], and if we select L so this estimator has a
fast stable response, any initial state estimate errors will be driven to zero. Thus the state estimate
x̂(k) will converge to the actual state x(k).
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We can find L the same way we found K, by taking the z-transform of equation (7.37) to get

[zI−Φ + LCm]X̃(z) = 0

then the symbolic estimator error characteristic equation is given by

|zI−Φ + LCm| = 0 (7.38)

The desired poles for the estimator error dynamics will yield numerical characteristic polynomial
αe(z), then coefficients between the two polynomials can be equated to yield n simultaneous equa-
tions in the estimator gains Li.

Estimator pole locations. Typically, estimator pole locations are selected so that the estimator
responds two to six times faster than the controlled plant. If there is noise on the measurement,
slower estimation is required.

7.5.2 Observability and Ackermann’s Formula

Given a desired set of estimator poles, does gain matrix L exist? As with controllability, it usually
exists, but it may not. The key idea is whether by only a measurement of the output y we can
deduce the behavior of the entire state vector x. If all internal modes are “connected” to the output,
the system is observable.

Ackermann’s formula can be used for estimator gain matrix computation, it is

L = αe(Φ)


Cm

CmΦ

CmΦ2

...

CmΦn−1



−1 
0
0
...
0
1

 (7.39)

In equation (7.39) we find the observability matrix O to be

O =
[

Cm CmΦ CmΦ2 · · · CmΦn−1
]
. (7.40)

This matrix must be full rank (nonsingular) for the system to be controllable.

7.5.3 MATLAB Tools

If we take the transpose of the estimator error equation system matrix Φ− LCm, we get ΦT −
Cm

TLT , which is the same form as system matrix Φ− ΓK, so if we substitute ΦT for Φ, Cm
T

for Γ, and LT for K, we can use the same approach for estimator gain computation as for control
gains. Specifically, MATLAB function place may be used. Design of a prediction estimator using
MATLAB will be shown in the next section.
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x̂(k + 1) = Φx̂(k) + Γu(k)

+ L y(k) − Cx̂(k)[ ]

Estimator

x(k + 1) = Φx(k) + Γu(k)
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law
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Figure 7.6: Control law plus estimator.

7.6 Regulator: Control Law plus Estimator

The state feedback control law and state estimator taken together comprise a controller. Since there
is as yet no reference input, this controller is properly called a regulator. A diagram of this system
is shown in Figure 7.6. The plant equation is

x(k + 1) = Φx(k) + Γu(k)

with control law

u(k) = −Kx̂(k)

hence the controlled plant is given by

x(k + 1) = Φx(k)− ΓKx̂(k). (7.41)

Since estimator error is x̃ = x− x̂, we have x̂ = x− x̃, and the controlled plant can be expressed as

x(k + 1) = Φx(k)− ΓK[x(k)− x̃(k)] (7.42)

= Φx(k)− ΓKx(k) + ΓKx̃(k) (7.43)

Recall the prediction estimator error equation:

x̃(k + 1) = [Φ− LCm]x̃(k) (7.44)

Using both (7.43) and (7.44) we can write a description of the complete system as[
x̃(k + 1)
x(k + 1)

]
=

[
Φ− LCm 0

ΓK Φ− ΓK

] [
x̃(k)
x(k)

]
. (7.45)

The controlled system state vector is the state estimator error vector x̃ plus the plant state vector
x. (Note that the state vector and estimator error vector are decoupled). This is only one possible
choice. We could also use x and x̂, in which case the controlled system model would be different.
This is left as a homework problem.
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Figure 7.7: Response of undamped harmonic oscillator from initial state.

Example

In this example a control law and estimator will be designed for an undamped 1 rad/sec harmonic
oscillator. The plant transfer function is

Y (s)

U(s)
=

1

s2 + 1

with differential equation ÿ + y = u. Using state vector

x =

[
x1

x2

]
=

[
y
ẏ

]
we have plant matrices

A =

[
0 1
−1 0

]
,B =

[
0
1

]
,C =

[
1 0

]
, D = 0.

The response of this plant from initial condition (1, 0) is shown in Figure 7.7.

Specifications. Increase the damping to critical, keeping the same natural frequency of 1 rad/sec.
Thus the desired pole locations will be

s = −1,−1
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Sampling period. The controlled system will have natural frequency of 1 rad/sec, or about 1/6
Hz. Pick sampling frequency to be approximately six times this frequency, or 1 Hz. Hence T = 1.

Plant Discretization. Using this T , the continuous plant can be defined, then discretized using
MATLAB:

>> A = [0 1;-1 0];

>> B = [0;1];

>> C = [1 0];

>> D = 0;

>>

>> plant_c = ss(A,B,C,D);

>> T = 1;

>> plant_d = c2d(plant_c,T)

a =

x1 x2

x1 0.5403 0.8415

x2 -0.8415 0.5403

b =

u1

x1 0.4597

x2 0.8415

c =

x1 x2

y1 1 0

d =

u1

y1 0

Sampling time: 1

Discrete-time model.

Note that the state-space matrices can be extracted from LTI model plant d by:

>> Phi = plant_d.A

Phi =

0.5403 0.8415

-0.8415 0.5403
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Figure 7.8: Response of controlled plant from initial state.

Control Law. The desired z-plane pole locations are found using the mapping z = esT ,

>>control_s_poles = [-1 -1]’;

>>control_z_poles = exp(control_s_poles*T)

control_z_poles = 0.3679

0.3679

It is a numerical anomaly of MATLAB function place that poles of multiplicity greater than the
number of inputs are not allowed. One pole can therefore be offset slightly, and the gain vector K is

>>control_z_poles(1) = control_z_poles(1)+0.0001;

>>K = place(Phi,Gamma,control_z_poles)

place: ndigits= 19

K = -0.5655 0.7186

The control law u = −Kx is seen to be positive position feedback and negative velocity feedback.
As a check, simulate the controlled system response from initial condition (1, 0). This is shown in
Figure 7.8.

Prediction Estimator. Select the natural frequency of the prediction estimator to be five times
the controlled plant, again with critical damping, thus the estimator pole locations are s = −5,−5,
and
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>>estimator_s_poles = [-5 -5]’;

>>estimator_z_poles = exp(estimator_s_poles*T)

estimator_z_poles = 0.0067

0.0067

Again, to use place we have to offset one pole slightly. In estimator design, remember that ΦT and
CT must be used (and that LT is returned):

>>estimator_z_poles(1) = estimator_z_poles(1)+0.0001;

>>L = place(Phi’,C’,estimator_z_poles);

place: ndigits= 20

>>L = L’

L = 1.0670

-0.5032

It is difficult to attach physical significance to the estimator gains. Remember, reduced physical
insight is a disadvantage of the state-space design methodology.

Controlled System. One model of the controlled system is given in equation (7.45). The following
MATLAB code will build up the “system” matrix for equation (7.45), called sys:

>>Sys = [Phi-L*C zeros(2);

Gamma*K Phi-Gamma*K]

Sys = -0.5267 0.8415 0 0

-0.3383 0.5403 0 0

-0.2599 0.3303 0.8002 0.5111

-0.4758 0.6047 -0.3657 -0.0644

System Response. The controlled system state used in equation (7.45) is the estimator error
state plus the plant state. If we start the complete system with state estimate equal to the actual
state, estimator error will always be zero. Thus it is more illustrative to start the system with some
estimator error present. Consider initial condition given by

x0 =

[
x̃0

x0

]
=


1
1
1
0


which imposes initial estimator errors of 1 unit on both states.

The controlled system (plant + control law + estimator) has no reference input. . . it is homoge-
neous. Nevertheless, for MATLAB simulation purposes an input matrix of proper dimension must
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be present. Also, an output matrix must be present of the proper dimension must be present. The
controlled system is twice the order of the plant. The following will simulate the system’s response
from the stated initial condition:

>> Input = [0 0 0 0]’; % Dummy input matrix

>> Output = [0 0 1 0]; % Output is original y

>> x0 = [1 1 1 0]’; % Apply initial condition

>> sys_ss = ss(Sys,Input,Output,D,T); % Create SS discrete-time controlled sys

>> [y,t,x] = initial(sys_ss,x0); % Get response

A plot of plant output y vs t is shown in Figure 7.9. It is very close to the ideal response of Figure 7.8,
although a little different due to the estimator transient. The estimator error x̃1 and x̃2 can also be
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0

0.2

0.4

0.6

0.8
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time

Figure 7.9: y response of plant + control law + estimator from
initial state (1, 1, 1, 0).

plotted, and is shown in Figure 7.10. As expected, it converges to zero very quickly.

>>x1_error = x(:,1);

>>x2_error = x(:,2);



7.6. REGULATOR: CONTROL LAW PLUS ESTIMATOR 153

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

time

x1 estimator error
x2 estimator error

Figure 7.10: Estimator error response.

Homework Problem Set 2

Problem 1.

Derive the symbolic matrix equations like (7.45) but using

xsystem =

[
x
x̂

]
as the controlled system state vector.

Problem 2.

Design a prediction state estimator for the DC motor + inertia of Problem 2 of the previous home-
work set. Assume the measurement is y = θl. Pick desired estimator pole locations consistent with
the control law you determined (or the instructor’s). Perform appropriate simulations to demon-
strate the successful behavior of your system.
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7.6.1 Controller Transfer Function

The controller contained within the dashed line of Figure 7.6 accepts a measurement y and generates
a control u. It is interesting to find the transfer function of the controller and verify it using transform
methods. Note that the controller transfer function need not be determined during a state-space
design effort.

We will consider a controller based on the prediction estimator. The prediction estimator update
equation (7.36) is

x̂(k + 1) = Φx̂(k) + Γu(k) + L[y(k)−Cx̂(k)] (7.46)

and the accompanying control law is

u(k) = −Kx̂(k) (7.47)

These two equations define the controller. To find the transfer function, substitute (7.47) in (7.46)
and express

x̂(k + 1) = [Φ− ΓK− LC]x̂(k) + Ly(k). (7.48)

Equation (7.48) is the state equation for the controller, while equation (7.47) is the output equation
for the controller. Apply the z-transform to (7.48) to obtain

zX̂ = [Φ− ΓK− LC]X̂ + LY,

and solve for X̂ as

X̂ = [zI−Φ + ΓK + LC]−1LY.

Substitution of X̂ into U = −KX̂ yields the controller transfer function

U(z)

Y (z)
= D(z) = −K[zI−Φ + ΓK + LC]

−1
L (7.49)

MATLAB Tools. With controller state equation (7.48) and output equation (7.47) the “A,B,C,D”
matrices can be identified and used in the ss2tf function to find the [num,den] transfer function
form. This will be shown in the following example.

Example

Consider the undamped oscillator of the previous sections. We discretized this system to obtain

Φ =

[
0.5403 0.8415
−0.8415 0.5403

]
,Γ =

[
0.4597
0.8415

]
and found control law and prediction estimator gains

K =
[
−0.5655 0.7186

]
,L =

[
1.0670
−0.5032

]
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From (7.48) and (7.47) the equivalent state-space matrices for the controller are

Ac → Φ− ΓK− LC

Bc → L

Cc → −K

Dc → 0

and the MATLAB script below yields the controller transfer function.

>>Ac = Phi-Gamma*K-L*C;

>>Bc = L;

>>Cc = K;

>>Dc = 0;

>>[numc,denc] = ss2tf(Ac,Bc,Cc,Dc)

numc = 0 -0.9650 0.1156

denc = 1.0000 0.3311 -0.0531

>>[zeros_c,poles_c,K_c] = tf2zp(numc,denc)

zeros = 0.1198

poles = -0.4494

0.1183

K = 0.9650

Thus the controller transfer function is

D(z) =
−0.965(z − 0.1198)

(z − 0.1183)(z + 0.4494)

A transfer function for the plant can be found by

>>[nump,denp] = ss2tf(Phi,Gamma,C,D)

nump = 0 0.4597 0.4597

denp = 1.0000 -1.0806 1.0000

>>[zeros_p,poles_p,K_p] = tf2zp(nump,denp)

zeros_p = -1

poles_p = 0.5403 + 0.8415i

0.5403 - 0.8415i

K_p = 0.4597
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Figure 7.11: Root locus of oscillator plant and controller.

The plant transfer function is

G(z) =
0.4597(z + 1)

z − 0.5403± j0.8415

Root Locus. Let the controller gain of 0.965 be replaced by a variable parameter 0.965K. Now
perform a root locus analysis of the plant with K as the parameter. This is shown in Figure 7.11
along with the closed-loop poles when K = 1. The poles should be exactly at z = 0.3679(2) and
z = 0.0067, the desired poles of the control law and estimator error dynamics! They’re pretty
close...science is wonderful!

7.7 Current and Reduced-Order Estimators

The prediction estimator as presented in Section 7.5.1 is only one possibility for state estimation.
Two other approaches will be shown in this Section.
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7.7.1 Current Estimator

Inspection of equation (7.36) shows that the state estimate at sample k + 1, x̂(k + 1), depends
on measured system output y(k). Thus there is an inherent one sample delay between the new
estimated state and the measurement used to correct it. Common sense tells us that it may improve
estimation if we use the current value of measurement y(k + 1) to correct state estimate x̂(k + 1).

One would only use a current estimator if the control computer were fast enough to perform the
estimator calculations very quickly, since this computation time is not modeled, and will therefore
have an effect on the system performance. If computational latency is significant, a prediction
estimator may be a better choice.

To analyze the current estimator we will separate the estimate prediction from the estimate correc-
tion. The prediction equation is simply the plant model,

x̆(k + 1) = Φx̂(k) + Γu(k) (7.50)

where x̆ is the predicted state before correction.

The correction equation is

x̂(k + 1) = x̆(k + 1) + L[y(k + 1)−Cx̆(k + 1)] (7.51)

where x̂(k + 1) is the new state estimate.

Substitution of (7.50) into (7.51) results in the current estimator equation,

x̂(k + 1) = [Φ− LCΦ]x̂(k) + [Γ− LCΓ]u(k) + Ly(k + 1) (7.52)

Note that the coefficient matrices in (7.52) are constant, hence the current estimator of (7.52) is not
more computationally complex than the prediction estimator equation of (7.36).

The estimator error x̃
∆
= x− x̂ as before, and subtracting equation (7.52) from plant equation (7.2)

yields the current estimator error equation,

x̃(k + 1) = [Φ− LCΦ]x̃(k) (7.53)

The poles of the current estimator error equation are given by

|zI−Φ + LCΦ| = 0,

and the symbolic characteristic obtained from this determinant may be equated with the desired
αe(z) = (z − p1)(z − p2) . . . to solve for current estimator gain matrix L.

Ackermann’s rule. Equation (7.53) for the current estimator is of the same form as (7.37) for the
prediction estimator, except C is replaced by CΦ. Thus Ackermann’s rule for the current estimator
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will be (7.39) with C replaced by CΦ. Thus for the current estimator,

L = αe(Φ)


CΦ

CΦ2

CΦ3

...
CΦn



−1 
0
0
...
0
1

 (7.54)

System Model. Combining the current estimator given by (7.52) and the control law u(k) =
−Kx̂(k), the controlled system model using composite state of x and x̂ is[

x(k + 1)
x̂(k + 1)

]
=

[
Φ −ΓK

LCΦ Φ− ΓK− LCΦ

] [
x(k)
x̂(k)

]
. (7.55)

MATLAB Tools. The MATLAB place function can be used to design a current estimator. In
forming a control law, we worked with system matrix Φ− ΓK, where K was unknown. For the
current estimator, we have matrix Φ− LCΦ, with L to be determined. Transposing, we have
ΦT − ΦTCTLT , which is in the same form as Φ− ΓK. MATLAB function place can be used
directly, as shown in the following example.

Example

Design a current estimator for use with the harmonic oscillator plant of the previous example, where
a prediction estimator was used. Place the estimator poles at the same locations, which were both
at z = 0.0067, although one pole was offset by 0.0001 because of MATLAB’s numerical anomaly.

The Φ and C matrices were

Phi = 0.5403 0.8415

-0.8415 0.5403

C = 1 0

The current estimator gain matrix L is given by

estimator_z_poles = 0.0067

0.0067

>>estimator_z_poles(1) = estimator_z_poles(1)+.0001;

>>L = place(Phi’,Phi’*C’,estimator_z_poles);

place: ndigits= 20

>>L = L’

L = 1.0000

0.6260
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so the current estimator gain matrix is

L =

[
1

0.6260

]

7.7.2 Reduced-Order Estimators

If some state variables can be measured, why estimate them? This is the reason behind reduced-
order estimators. It may be necessary to estimate only a subset of the state vector. Although, when
the measurement contains significant noise, a full state estimator (being inherently a low-pass filter)
will tend to reduce the noise and may give better performance.

Assume the measurement is a scalar y, and denote this by xa. Let xb be the portion to be estimated.
The plant state equation of (7.2) may be partitioned as[

xa(k + 1)
xb(k + 1)

]
=

[
Φaa Φab

Φba Φbb

] [
xa(k)
xb(k)

]
+

[
Γa
Γb

]
u(k) (7.56)

with output equation

y(k) =
[

1 0
] [ xa(k)

xb(k)

]
. (7.57)

The portion of (7.56) which describes the dynamics of the unmeasured states is

xb(k + 1) = Φbbxb(k) + Φbaxa(k) + Γbu(k)︸ ︷︷ ︸
known “input”

(7.58)

where the terms grouped may be considered as a known “input” into the xb dynamics. Now express
the xa portion of (7.56) as

xa(k + 1)− Φaaxa(k)− Γau(k)︸ ︷︷ ︸
known “measurement”

= Φabxb(k). (7.59)

The grouped quantity on the left of (7.59) is known (or can be measured). Equations (7.58) and
(7.59) are effectively state and output equations for xb, in the form of (7.2).

Therefore, the prediction estimator equations may be used to estimate xb with the following substi-
tutions:

x ← xb,

Φ ← Φbb,

Γu(k) ← Φbaxa(k) + Γbu(k),

y(k) ← xa(k + 1)− Φaaxa(k)− Γau(k),

C ← Φab.
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Then the reduced-order estimator equation is

x̂b(k + 1) = Φbbx̂b(k) + Φbaxa(k) + Γbu(k)

+L[xa(k + 1)− Φaaxa(k)− Γau(k)−Φabx̂b(k)]. (7.60)

Reduced-order estimator error may be found by subtracting (7.60) from (7.58) to get

x̃b(k + 1) = [Φbb − LΦab]x̃b(k) (7.61)

and gain matrix L may be selected as before using either the roots of

|zI−Φbb + LΦab| = αe(z) (7.62)

to be in desired locations, or by Ackermann’s formula

L = αe(Φbb)


Φab

ΦabΦbb

ΦabΦ
2
bb

...
ΦabΦ

n−2
bb


−1 

0
0
...
0
1

 . (7.63)

Example

Design a reduced-order estimator for use with the harmonic oscillator plant. Assume that position
is measured, but velocity must be estimated. Thus[

x1

x2

]
=

[
measured position state y
velocity to be estimated

]
and the plant partioning is[

Φaa Φab
Φba Φbb

]
=

[
0.5403 0.8415
−0.8415 0.5403

]
,

[
Γa
Γb

]
=

[
0.4597
0.8415

]

Estimator gain L is a scalar, hence there is only one estimator root to pick. We will place this pole
at z = 0.0067 as with the estimator poles before. From (7.62) the estimator error characteristic
equation is

z − 0.5403 + 0.8415L = z − 0.0067

where we have placed the pole at 0.0067. Solving for L yields

L = 0.6341

The estimator equation is given by (7.61), thus

x̂2(k + 1) = 0.5403x̂2(k)− 0.8415y(k) + 0.8415u(k)

+0.6341[y(k + 1)− 0.5403y(k)− 0.4597u(k)− 0.8415x̂2(k)]
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which may be reduced to

x̂2(k + 1) = 0.0067x̂2(k) + 0.55u(k)− 1.1841y(k) + 0.6341y(k + 1)

Note that this equation is like a current estimator in that a measurement of y at sample k + 1 is
used to generate the estimate x̂2 at sample k + 1. To reduce computational delay, this calculation
would be done in two steps, one before the sample, and one after sampling. Before sampling,

x̂2 = 0.0067x̂2(k) + 0.55u(k)− 1.1841y(k)

and after sampling this would be updated

x̂2 = x̂2 + 0.6341y(k + 1)

The same approach of performing as much computation before sampling should generally be followed,
regardless of the type of estimator used.

7.8 Adding a Reference Input

Up to this point, the controller has not included a reference input. Such systems are called regulators.
For most applications, a reference input (or set point) is needed. For simplicity, the reference input
will first be added to the plant plus full state feedback control law, but no estimator. Then the
estimator will be added, and we will examine the effect of the reference input on estimator error.

The approach will be to find the steady-state state vector that corresponds to the steady-state
output we want, then find a way to introduce the reference input so it will produce that state.

7.8.1 Reference Input with Full State Feedback

First consider a plant using full state feedback control law u(k) = −Kx(k). Introduce the reference
input via matrix Nx to generate reference state xr, as shown in Figure 7.12. Even though we have
dealt primarily with SISO systems in this chapter, in this section we will consider MIMO systems
for generality. One portion of the final project will require MIMO analysis and design.

In adding the reference input, we want to find Nx such that steady-state system output yr (which
is determined by output matrix Cr) is at the desired reference value. Note that output yr might

Plant
xrr

KN x Cr

u x y r+

-

Figure 7.12: Block diagram of reference input added to plant with
full state feedback.
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y rr x r u x

+ - +

+

N x

Nu

K Plant Cr

Figure 7.13: Reference input added to plant with full state feedback
plus feedforward.

not be the same quantity (I will define y = Cex) that has been measured and fed to the estimator
in previous sections. Now “estimator” output matrix Ce produces the measurement the estimator
uses. Of course, it is quite possible that Cr = Ce. Therefore, for reference input matrix Nx,

Nxr = xr (7.64)

and the control law is
u = −K(x− xr). (7.65)

If the plant is Type 1 or higher, and r is a position input, the steady-state error will be zero, and
the final state will equal the (static) reference state,

x(∞)
∆
= xss = xr

If the plant is Type 0, state feedback alone will not increase the Type, hence there will be some
steady-state error, and xss 6= xr.

This is not all we really want, however. We would like the output to follow the reference input, or
yr = r. If the plant is not Type 0, since state feedback will not add integral action, a feedforward
term which adds a steady-state component of control action u must be added. This term is

uss = Nurss (7.66)

and it is shown in Figure 7.13. Feedforward action, although conceptually valid, is rarely used.
Instead, integral action is typically used to increase system Type. The reason feedforward action is
rarely used is that it is an open-loop correction, and its effectiveness relies on the accuracy of the
plant model. . . and there is always modeling error. Integral control action, in contrast, is closed-loop
in nature, and will be more robust to modeling errors. While this is a heuristic argument, it is valid.
If time permits, a method for adding integral action to state feedback control will be covered in this
chapter.

Our steady-state requirements are
Nxrss = xrss = xss

and
Crxss = yrss = rss (7.67)
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which may be combined to yield
CrNxrss = rss

thus
CrNx = I (7.68)

Now we are assuming steady-state, hence

x(k + 1) = Φx(k) + Γu(k) −→ xss = Φxss + Γuss

or
(Φ− I)xss + Γuss= 0

and from (7.67) and (7.66),
(Φ− I)Nxrss + ΓNurss = 0

which reduces to
(Φ− I)Nx + ΓNu = 0 (7.69)

Equations (7.68) and (7.69) may be combined into a single matrix equation,[
Φ− I Γ
Cr 0

] [
Nx

Nu

]
=

[
0
I

]
. (7.70)

If the number of plant inputs in u and desired outputs in yr are the same, then the coefficient matrix
in equation (7.70) is square, and the solution is[

Nx

Nu

]
=

[
Φ− I Γ
Cr 0

]−1 [
0
I

]
. (7.71)

Example

The undamped oscillator plant considered in previous examples is of Type 0. The relevant system
matrices for that system are

Φ =

[
0.5403 0.8415
−0.8415 0.5403

]
,Γ =

[
0.4597
0.8415

]
,Cr = C =

[
1 0

]
.

and the reference input matrices are found to be

>>inv([Phi-eye(2) Gamma ; C 0]) * [0;0;1]

ans = 1.0000

-0.0000

1.0000

hence

Nx =

[
1
0

]
, Nu = 1.

As expected, feedforward term Nu is nonzero for this Type 0 plant.
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K Plant
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y

Figure 7.14: Reference input added to plant with estimator.

7.8.2 Reference Input with an Estimator

The same procedure can be applied to the case where a state estimator is used instead of a full
state measurement. One must make sure to apply the same control u to the estimator as well as
the plant, as shown in Figure 7.14. Thus equation (7.48) should not be used directly, since it was
based on a control u which did not include a reference input. Look at Figure 7.5, where we first
formulated the estimator, and verify that the estimator must get the same control force u as the
plant. Rather, equation (7.36) should be used, with u(k) given by

u(k) = −K[x̂(k)− xr(k)] + Nur(k). (7.72)

It can be shown that in the absence of modeling errors the addition of the reference input will not
excite any estimator error.

Homework Problem Set 3

Problem 1.

Derive the system equations for a system with a prediction estimator and a reference input. Assume
a SISO system, and use state vector

xsys =

[
x
x̃

]
and show that the reference input does not excite any estimator error x̃.

Problem 2.

Introduce a motor position reference input to the DC motor + inertia of Chapter 7, Problem 2. Use
control law and prediction estimator from the homework solutions. Simulate the system’s response
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to a rest-to-rest load maneuver of 10 degrees in 0.5 sec, where θl(t) is given by a cubic polynomial
θl(t) = a0 + a1t + a2t

2 + a3t
3. This is a more realistic reference input to track than a step, for

example.

7.9 Uniqueness of Solution—The MIMO Case

The previous approach to the introduction of a reference input is general with respect to the number
of inputs and outputs. However, the solution may not be unique. Consider a system of the following
dimension:

• m plant inputs—u is m× 1

• n states—x is n× 1

• p outputs—yr and r are p× 1

The dimension of equation (7.70) is
n×n︷ ︸︸ ︷

Φ− I

n×m︷︸︸︷
Γ

Cr︸︷︷︸
p×n

0︸︷︷︸
p×m


︸ ︷︷ ︸

(n+p)×(n+m)


n×p︷︸︸︷
Nx

Nu︸︷︷︸
m×p


︸ ︷︷ ︸
(n+m)×p

=


n×p︷︸︸︷
0
I︸︷︷︸
p×p


︸ ︷︷ ︸

(n+p)×p

. (7.73)

From equation (7.73) it is clear that if m = p the coefficient matrix is square and may be directly
inverted. However, if m 6= p this is not true. But there is still a solution, there is just not a unique
solution. The problem is analogous to the classic linear algebra problem Ax = b.

The mathematics of why the following approach works will be treated somewhat in Chapter 8 on
System Identification. Suffice it to say that we achieve a best least squares fit. When A is not
square, multiply by AT to get ATAx = ATb. Now ATA may be inverted, and the solution is
x = [A

T
A]−1ATx. The reference input problem is identical, and if we let[

Φ− I Γ
Cr 0

]
∆
= Ψ

the solution when there are differing numbers of plant inputs and controlled outputs is[
Nx

Nu

]
=
[
ΨTΨ

]−1
ΨT

[
0
I

]
(7.74)

The resulting Nx and Nu can then be used with the methods of Section 7.8.
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Position
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u

x

θ

lζ , ωn

Figure 7.15: Pendulum and cart driven by position servo.

7.10 Another Example—Stick Balancer

Consider the inverted pendulum on a cart driven by a position servo as shown in Figure 7.15. The
equation of motion of the pendulum is

ẍ+ lθ̈ − gθ = 0

and the cart is

ẍ+ 2ζωnẋ+ ω2
nx = ω2

nu

where u is the input to the position servo.

Eliminate ẍ using both equations of motion, and one gets

θ̈ =
g

l
θ +

ω2
n

l
x+

2ζωn
l

ẋ− ω2
n

l
u

Pick the state vector

x =


x1

x2

x3

x4

 =


θ

θ̇
x
ẋ


then the following system and input matrices obtain:

A =


0 1 0 0
g/l 0 ω2

n/l 2ζωn/l
0 0 0 1
0 0 −ω2

n −2ζωn

 ,B =


0

−ω2
n/l
0
ω2
n
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Numerical Values. To go any farther we need some numerical values. For the pendulum,

g = 9.8 m/sec2

l = 0.3 m

and for the position servo

ζ = 0.707

ωn = 20 rad/sec

and we get plant matrices

A =


0 1 0 0

32.7 0 1333 94.3
0 0 0 1
0 0 −400 −28.3

 ,B =


0

−1333
0

400


Since the position servo natural frequency is about 3 Hz, we won’t require any higher frequency
response from the controlled system. Thus a sampling frequency of 25 Hz (T = 0.04) should be
adequate. Discretizing the plant with this T yields

Φ =


1.0262 0.0403 0.7240 0.0619
1.3181 1.0262 29.0507 2.7782

0 0 0.7839 0.0215
0 0 −8.6106 0.1751

 ,Γ =


−0.7240
−29.0507

0.2161
8.6106



Step Response of Plant. As a “reality check,” find the response of the pendulum to a step
position input of 1 cm (0.01 m). Selecting C =

[
1 0 0 0

]
to yield θ as the output, we obtain

the pendulum angular response shown in Figure 7.16. The pendulum angle of Figure 7.16 looks
believable, it is in the negative direction which is consistent with our intuition for a positive base
displacement.

Plant Controllability. Before continuing on with the controller development, check that the
plant is controllable with the given input. By adjusting the base position, it seems obvious that it is
possible to control both base position and velocity, and pendulum position and velocity. Nevertheless,
intuition can be in error, and it is best to check.

>>Ctr = ctrb(Phi,Gamma);

>>rank(Ctr)

ans = 4

As expected, the plant is controllable.
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Figure 7.16: Response of pendulum to 1 cm step servo displace-
ment.

Control Law. In keeping with Butterworth filter guidelines, equally space four poles at radius ωn
around the negative real axis in the s-plane, hence at angles of ±22.5o,±67.5o from the negative
real axis. Thus the four poles are at s = −7.6537 ± j18.4776, s = −18.4776 ± j7.6537. In the z
plane these four poles are z = 0.5442± j0.4960, z = 0.4553± j0.1439.

Using Matlab place, the state feedback gain is

K =
[
−3.1715 −0.3895 −8.5452 −1.2489

]
Plant Observability Assume that only a measurement of pendulum angle is available (measure-
ment of cart position is probably available, since its position is controlled), can we estimate the full
state vector from only a measurement of pendulum angle? The C matrix will be

C =
[

1 0 0 0
]

and a check of the observability matrix shows

>>C = [1 0 0 0];

>>rank(ctrb(Phi’,C’))

ans = 4

Since the observability matrix O has full rank, the system is observable, and we can proceed with a
prediction estimator design.
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Prediction Estimator Place the estimator poles like the previous control law poles, but use a
higher natural frequency of ωn = 50 rad/sec. These poles are at s = −19.1342 ± j46.1940 and
s = −46.1940 ± j19.1342. The corresponding z-plane locations are z = −0.1272 ± j0.4474 and
z = 0.1136± j0.1092. Again using the place function, we get

L =


3.0386
64.3273
−0.0320
5.6954



Reference Input We wish to specify the position of the cart using the reference input, or yr = x.
This is a different variable than the measurement θ, so Cr 6= C, and

Cr =
[

0 0 1 0
]

It doesn’t really make sense to provide a reference input for pendulum angle θ, except for trimming,
since θ = 0 is the only pendulum angle that can exist in steady-state. So the number of plant inputs
u and desired outputs x are the same (m = p), hence the coefficient matrix in equation (7.70) is
square, and terms Nx and Nu are given by equation (7.71),

>>Cr = [0 0 1 0];

>>inv([Phi-eye(4) Gamma ; Cr 0])*([0;0;0;0;1])

ans = -0.0000

0.0000

1.0000

0.0000

1.0000

Thus

Nx =


0
0
1
0

 , Nu = 1

System Modeling. The complete system is modeled by the five following equations (integrated
in the proper manner, of course!):

x(k + 1) = Φx(k) + Γu(k)

y(k) = Cx(k)

x̂(k + 1) = Φx̂(k) + Γu(k) + L[y(k)−Cx̂(k)]

u(k) = −K[x̂(k)− xr(k)] +Nur(k)

xr(k) = Nxr(k)
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Figure 7.17: Response of cart and pendulum to 1 cm initial condi-
tion of cart (note initial motion of cart is away from equilibrium).

Initial Condition Response. First impose an initial condition on the plant and observe its return
to equilibrium. Note that this controller will return all four states to equilibrium. . . it will balance
the stick and also center the cart. Let’s pick an initial offset of 0.01 m (1 cm) for the cart, with the
pendulum balanced, hence

x(0) =


θ0

θ̇0

x0

ẋ0

 =


0
0

0.01
0


The response of the cart position and pendulum angle as the system returns to equilibrium is shown
in Figure 7.17. Note that the initial motion of the cart is to the right, away from the desired center
position! However, this is intuitive, since the stick was initially balanced, and to move the cart back
to the left one must first move to the right to get the stick leaning to the left, then the cart can
move left.

Reference Input Response. Our reference input acted on cart position, thus we can specify
reference cart position and the other variables will be regulated. Choose cart motion of 0.2 m (20
cm) in 1 second (25 samples) at constant velocity. The system behavior to this reference trajectory
appears in Figure 7.18, where again cart position and pendulum angle are plotted. As before, the
cart moves the “wrong way” first, then moves back in the desired direction. The pendulum angle
in Figure 7.18 is pretty large, approaching 0.4 radians, which is getting close to violating the “small
angle” approximation in the pendulum equation of motion. Use of the small angle approximation is
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Figure 7.18: Response of cart and pendulum to reference trajectory
of 0.2 m in 1 second at constant velocity.

an example of a modeling error, or unmodeled dynamics.
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Chapter 8

System Identification

8.1 Introduction

To design a controller for a dynamic system it is necessary to have a model that describes the
dynamic behavior of that system. There are fundamentally two approaches to finding this model:

Analytical Modeling Using basic principles. . . the laws of motion, electrical laws, and other phys-
ical principles, the designer obtains differential equations of motion describing the response of
mechanical, electrical, thermal, fluid, and other systems.

Experimental Identification Excite the dynamic system with a given input, and record its out-
put. Construct a model from this observed data.

While analytical modeling is almost always of some use, if for nothing more than to give insight into
the expected model structure, actual physical phenomena may be too complex to permit satisfactory
description using physical principles. Under these circumstances, the designer looks to experimental
data, and experimental system identification.

This chapter will contain a very brief treatment of system identification using the least squares
method. We will make the assumption that the system to be identified is linear and time-invariant,
in keeping with the prior chapters.

8.2 Models and Data Organization

Let’s use a second-order transform-based discrete system to illustrate the procedure. Consider

Y (z)

U(z)
=

b1z
−1 + b2z

−2

1− a1z−1 − a2z−2
(8.1)
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This transfer function and associated ai and bi could have been expressed in state-space form with Φ
and Γ in one of the canonical forms of Chapter 7 (either control canonical or observer canonical). A
canonical state-space form is a “minimal” realization. . . it has the minimum number of parameters,
like the transfer function of equation 8.1. Note that a feedforward term b0 was not included in
equation 8.1 because it is virtually never seen in a physical system (unlike a controller).

The difference equation that corresponds to equation 8.1 is

y(k) = a1y(k − 1) + a2y(k − 2) + b1u(k − 1) + b2u(k − 2) (8.2)

Now consider a sequence of input samples from k = 0. . .N , given by {u(0), u(1), . . . , u(N)}. Assum-
ing zero initial conditions on output y, the output samples are given by

y(2) = a1y(1) + a2y(0) + b1u(1) + b2u(0)

y(3) = a1y(2) + a2y(1) + b1u(2) + b2u(1)

...

y(k) = a1y(k − 1) + a2y(k − 2) + b1u(k − 1) + b2u(k − 2) (8.3)

...

y(N) = a1y(N − 1) + a2y(N − 2) + b1u(N − 1) + b2u(N − 2)

Equation 8.3 can be arranged in matrix form as
y(2)
y(3)

...
y(N)

 =


y(1) y(0) u(1) u(0)
y(2) y(1) u(2) u(1)

...
...

...
...

y(N − 1) y(N − 2) u(N − 1) u(N − 2)



a1

a2

b1
b2

 (8.4)

In linear algebra form, equation (8.4) is the form b = Ax or the more familiar

Ax = b (8.5)

where we have defined

A
∆
=


y(1) y(0) u(1) u(0)
y(2) y(1) u(2) u(1)

...
...

...
...

y(N − 1) y(N − 2) u(N − 1) u(N − 2)

 ,x ∆
=


a1

a2

b1
b2

 ,b ∆
=


y(2)
y(3)

...
y(N)

 .
Just as in equation (8.5), in the system identification problem matrix A is known (inputs u and
outputs y are known), vector b is known (outputs y are known), and vector x is unknown (system
parameters ai and bi are unknown). Thus, as constructed, this is a linear algebra problem.
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8.3 Least Squares Approximations

In the exact sense, the system of equations Ax = b either has a unique solution or not. There are
several reasons why there may not be a unique solution. One reason, and this is the reason that is
our case, is that the dimension of b is larger than the dimension of x, and there are many solutions
for x. In terms of system identification, this means that number of data samples taken is greater
than the number of model parameters. This is the normal case.

So if there are many solutions, which is the best? One approach is to choose the x that minimizes
the average error over the entire set of data. If we let x̂ be our estimate of the actual x, we can form
the error vector for the entire data set as ε, where

ε
∆
= Ax̂− b (8.6)

There are many ways to define the average error over the entire data set, but the most convenient
is the sum of squares:

ε2 = εT ε = (Ax̂− b)T (Ax̂− b) (8.7)

The sum of squares of the error ε2 is a scalar, and is what we want to minimize. We will present
two approaches to minimize ε2, which yield the same result.

8.3.1 Minimization of ε2 by Calculus

Multiplying out equation (8.7) yields

ε2 = x̂TATAx̂− 2bTAx̂ + bTb.

To minimize ε2 take the derivative with respect to x̂ and equate to zero. Using the rules of vector
calculus,

∂ε2

∂x̂
= 2x̂TATA− 2bTA = 0,

thus

x̂TATA = bTA,

and

ATAx̂ = ATb.

The solution for x̂ is given by

x̂ = [A
T
A]−1ATb (8.8)

The result for x̂ in equation (8.8) yields the lowest sum of squared errors.
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8.3.2 Minimization of ε2 by Linear Algebra

Since this is not a course in linear algebra, this section will employ heuristics in lieu of rigor. Again,
the problem is to choose x̂ to minimize the error in the least squares sense.

In a geometrical sense, x̂ is projecting the columns of A onto the elements of b. The distances from
the elements of b to this projection are given by ||Ax̂− b||, and the least squares best fit corresponds
to minimizing these distances. This will occur when error vector Ax̂− b is perpendicular to the
column space of A. If two vectors p and q are perpendicular, their dot product must be zero, hence
pTq = 0.

Applying this to our case, we find that the columns of A must be perpendicular to error vector
Ax̂− b, hence

AT (Ax̂− b) = 0,

or

ATAx̂−ATb = 0

or

ATAx̂ = ATb

which leads to the same result as by calculus.

8.4 Application to System Identification

The results of the least squares approximation of Section 8.3 may be directly applied to system
identification. Consider the case represented by equation (8.4), but generalized for an nth order
system. Again consider a data set consisting of N + 1 measurements from k = 0. . .N . Define the
following matrices, after equation (8.4):

Y
∆
=


y(n)
y(n+ 1)
...
y(N)


︸ ︷︷ ︸

(N−n+1)×1

(8.9)

Ψ
∆
=


y(n− 1) y(n− 2) · · · y(0) u(n− 1) u(n− 2) · · · u(0)
y(n) y(n− 1) · · · y(1) u(n) u(n− 1) · · · u(1)
...

...
...

...
...

...
y(N − 1) y(N − 2) · · · y(N − n) u(N − 1) u(N − 2) · · · u(N − n)


︸ ︷︷ ︸

(N−n+1)×2n

(8.10)
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Θ
∆
=



a1

a2

· · ·
an
b1
b2
· · ·
bn


︸ ︷︷ ︸

2n×1

(8.11)

With the definitions of (8.9), (8.10), and (8.11), the equation describing the input-output data and
model parameters may be written as

Y = ΨΘ (8.12)

which is exactly in the form of b = Ax. Thus the development of Section 8.3 is directly applicable,
and the solution for the model parameter vector Θ is

Θ = [Ψ
T
Ψ]−1ΨTY. (8.13)

Equation (8.13) yields the best fit in the least squares sense.

Note that the order of the model is up to the designer. Selection of the order should be based on
physical reasoning. Of course, the designer may perform multiple fits with different orders and select
the lowest order fit that yields acceptable agreement. Selecting a model of too-high order means
that you use the “extra” parameters to fit noise in the data. And remember that there is always
quantization noise.

8.5 Practical Issues—How Well Does it Work?

Least squares is the simplest and most straightforward parametric identification method. If the
system to be identified exhibits linear behavior and the input/output data is relatively noise-free,
least squares will yield acceptable results. There are a host of more sophisticated methods that
work better than least squares under more difficult conditions, but they are beyond the scope of this
book.

8.5.1 Selection of Input

The choice of input u used in identification is important. Examine equations (8.3) for a moment, in
particular the input terms involving u(k) and bi. Consider the (absurd) case where the input u(k)
was a constant. Then in each equation in (8.3) the bi terms would be multiplied by the same number,
and would be combined into a single quantity. We could not ever separate the bi terms from the
observed data. The constant u fails to “excite” all the dynamics of the plant. This problem has been
studied extensively, and an input sequence {u(k)} that fluctuates enough to avoid the possibility of
linear combinations of the elements of model parameter vector Θ showing up in the error is called
persistently exciting.
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Two types of inputs will be shown in this section:

• Random Input

• Random Binary Input

Random Input. This is just random noise, which may be easily generated using MATLAB. If
random the harmonic content will be rich enough to be persistently exciting. Either a normal or
uniform distribution is available. A normal distribution with mean of 0.0 and variance 1.0 may be
created with the randn function. A plot of a such a normal distribution for k = 0. . .100 is shown in
Figure 8.1. Naturally the random input may have to be biased and scaled before application to a
given physical system.

Random Binary Input This is a random input that fluctuates between two distinct values. It
is a series of pulses with random durations. Since a step signal has infinite harmonic content, this
type of input will also persistently excite the system. A random binary input is shown in Figure 8.2

Both types of random inputs may be easily generated using the MATLAB randn (normally-distributed
random sequence) function, along with the sign function for producing the binary signal.

8.5.2 Quantization Noise

As briefly discussed in Section 1.2, quantization effects are always present whenever there is a
conversion between the analog and digitial domains. The size of the quantum is dependent on the
range and resolution of the conversion device. For example, an 8-bit A/D converter digitizes to
1 part in 256. If the A/D has a range of ±5V, the voltage quantum is q = 10/256 = 0.0391 V.
Depending on how close the analog voltage is to one of the levels of quantization, there will be more
or less quantization error present. Note that in identification, quantization only affects output y,
since the input u is already quantized when it is acquired by the computer.

Quantization can be either rounding or truncation. A plot of the effect of rounding is shown in
Figure 8.3. In Figure 8.3, if the input is between ±0.5, the output is zero. If the input is between 0.5
and 1.5, the output is 1, and so on. The quantization error fluctuates between ±q in a “sawtooth”
variation.

The amount of quantization noise is also dependent on how well we use the full range of the conversion
device. If our input is only ±1 V, and the A/D has a range of ±5 V, the effective resolution will be
less than the possible resolution. If possible, the full range of conversion devices should be used.
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Figure 8.1: Normally-distributed random noise with mean 0.0 and
variance 1.0.
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Figure 8.2: Random binary signal.
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Figure 8.3: Effect of rounding with q = 1.

8.5.3 Identification Example

As an example, consider the third order continuous system with transfer function

G(s) =
2000

(s+ 10)(s2 + 20s+ 200)
=

2000

(s+ 10)(s+ 10± j10)

The complex poles have natural frequency ωn ≈ 14 rad/sec, or about 2.25 Hz, so pick sampling
frequency of 20 Hz, or T = 0.05 sec. Preceding this G(s) by a sampler and following it by a ZOH
(our standard discretization procedure) yields its discrete form,

G(z) =
0.0284z−1 + 0.0775z−2 + 0.0134z−3

1− 1.6711z−1 + 1.0136z−2 − 0.2231z−3
=

0.0284(z + 0.1857)(z + 2.54)

(z − 0.6065)(z − 0.5323± j0.2908)

Excitation. Excite this G(z) with 101 samples of a random binary signal of amplitude ±1 as
shown in Figure 8.2. Assume that the output is quantized by an A/D with 8-bit resolution and ±5V
range.

The quantized response of this system is shown in Figure 8.4.

Least-Squares Fit. The input data u(k) and output data y(k) must be arranged according to
equations (8.9) and (8.10) to form the Y and Ψ matrices, then the least-squares solution for model
parameter vector Θ is given by equation (8.13). Here N = 100 and n = 3, and Y and Ψ are
constructed accordingly.
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Figure 8.4: Quantized output of example G(z) driven by random
binary signal.

Executing this yields model parameter vector

Θ =
[

1.4067 −0.5852 0.0192 0.0302 0.0865 0.0284
]T

and corresponding estimated transfer function

Ĝ(z) =
0.0302z−1 + 0.0865z−2 + 0.0284z−3

1− 1.4067z−1 + 0.5852z−2 − 0.0192z−3
=

0.0302(z + 0.3784)(z + 2.4894)

(z − 0.0358)(z − 0.6855± j0.2574)

Step Response. How does the step response of the model compare with the actual system? Both
unit step responses are shown in Figure 8.5. While the steady-state value is somewhat inaccurate,
the transient portion of the response exhibits excellent agreement.

Comments. In this example, we did not make good use of the range of the A/D converter, using

only about ±1V range of the ±5V converter. This contributed to the inaccuracy. Even so, the Ĝ(z)
we obtained would serve pretty well for controller design.
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Figure 8.5: Comparison of actual and model step responses.
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Homework Problems

Problem 1.

Data from a mass moving in a plane (x, y) without force are given below. Plot the points and use

t x y

0 -0.426 1.501
1 0.884 1.777
2 2.414 2.530
3 2.964 3.441
4 3.550 3.762
5 5.270 4.328
6 5.625 4.016
7 7.188 5.368
8 8.129 5.736
9 9.225 6.499
10 10.388 6.233

least squares to estimate the initial value of x, the initial value of y, and the velocity of the mass in
x and y. Draw the curve (line) that corresponds to your estimates.

Problem 2.

Select a discrete transfer function (at least second order) and investigate identifying its parameters.

(a) Drive the system with both random and PRBS inputs.

(b) Perform least-square fits both using a model structure that is the correct order, and an order
greater than the “actual” order.

(c) What happens when the model order is too high?


